Skip to content

sum, sums, msum, wsum

Totals – simple, running, moving, and weighted

sum

Total

sum x    sum[x]

Where x is

  • a simple numeric list, returns the sums of its items
  • an atom, returns x
  • a list of numeric lists, returns their sums
  • a dictionary with numeric values

Nulls are treated as zeros.

q)sum 7                         / sum atom (returned unchanged)
7
q)sum 2 3 5 7                   / sum list
17
q)sum 2 3 0N 7                  / 0N is treated as 0
12
q)sum (1 2 3 4;2 3 5 7)         / sum list of lists
3 5 8 11                        / same as 1 2 3 4 + 2 3 5 7
q)sum `a`b`c!1 2 3
6
q)\l sp.q
q)select sum qty by s from sp   / use in select statement
s | qty
--| ----
s1| 1600
s2| 700
s3| 200
s4| 600
q)sum "abc"                     / type error if list is not numeric
'type
q)sum (0n 8;8 0n) / n.b. sum list of vectors does not ignore nulls
0n 0n
q)sum 0n 8 / the vector case was modified to match sql92 (ignore nulls)
8f
q)sum each flip(0n 8;8 0n) /do this to fall back to vector case
8 8f

sum is an aggregate function, equivalent to +/.

Floating-point addition is not associative

Different results may be obtained by changing the order of the summation.

❯ q -s 4
KDB+ 4.0 2021.01.20 Copyright (C) 1993-2021 Kx Systems
m64/ 12()core 65536MB sjt mackenzie.local 127.0.0.1 ..

q)\s 0
q)a:100000000?1.
q)\P 0
q)sum a
49999897.181930684
q)sum reverse a
49999897.181931004

The order of summation changes when the primitive is able to use threads.

q)\s 4
q)sum a
49999897.181933172

sum is a multithreaded primitive.

sums

Running totals

sums x    sums[x]

Where x is a numeric or temporal list, returns the cumulative sums of the items of x.

The sum of an atom is itself. Nulls are treated as zeros.

q)sums 7                        / cumulative sum atom (returned unchanged)
7
q)sums 2 3 5 7                  / cumulative sum list
2 5 10 17
q)sums 2 3 0N 7                 / 0N is treated as 0
2 5 5 12
q)sums (1 2 3;2 3 5)            / cumulative sum list of lists
1 2 3                           / same as (1 2 3;1 2 3 + 2 3 5)
3 5 8
q)\l sp.q
q)select sums qty by s from sp  / use in select statement
s | qty
--| --------------------------
s1| 300 500 900 1100 1200 1600
s2| 300 700
s3| ,200
s4| 100 300 600
q)sums "abc"                    / type error if list is not numeric
'type

sums is a uniform function, equivalent to +\.

msum

Moving sums

x msum y    msum[x;y]

Where

  • x is a positive int atom
  • y is a numeric list

returns the x-item moving sums of y, with nulls replaced by zero. The first x items of the result are the sums of the terms so far, and thereafter the result is the moving sum.

q)3 msum 1 2 3 5 7 11
1 3 6 10 15 23
q)3 msum 0N 2 3 5 0N 11     / nulls treated as zero
0 2 5 10 8 16

msum is a uniform function.

wsum

Weighted sum

x wsum y    wsum[x;y]

Where x and y are numeric lists, returns the weighted sum of the products of x and y. When both x and y are integer lists, they are first converted to floats.

q)2 3 4 wsum 1 2 4   / equivalent to sum 2 3 4 * 1 2 4f
24f

q)2 wsum 1 2 4       / equivalent to sum 2 * 1 2 4
14

q)(1 2;3 4) wsum (500 400;300 200)
1400 1600

wsum is an aggregate function, equivalent to {sum x*y}.

Sliding windows
Weighted sum

Implicit iteration

sum, sums, and msum apply to dictionaries and tables. wsum applies to dictionaries.

q)k:`k xkey update k:`abc`def`ghi from t:flip d:`a`b!(10 21 3;4 5 6)

q)sum d
14 26 9
q)sum t
a| 34
b| 15
q)sum k
a| 34
b| 15

q)sums d
a| 10 21 3
b| 14 26 9

q)2 msum t
a  b
-----
10 4
31 9
24 11

q)1 2 wsum d
18 31 15

Aggregating nulls

avg, min, max and sum are special: they ignore nulls, in order to be similar to SQL92. But for nested x these functions preserve the nulls.

q)sum (1 2;0N 4)
0N 6

Domains and ranges

sum and sums

domain: b g x h i j e f c s p m d z n u v t
range:  i . i i i j e f i . p m d z n u v t

msum

    b g x h i j e f c s p m d z n u v t
----------------------------------------
b | i . i i i j e f . . n i i f n u v t
g | . . . . . . . . . . . . . . . . . .
x | i . i i i j e f . . n i i f n u v t
h | i . i i i j e f . . n i i f n u v t
i | i . i i i j e f . . n i i f n u v t
j | i . i i i j e f . . n i i f n u v t
e | . . . . . . . . . . . . . . . . . .
f | . . . . . . . . . . . . . . . . . .
c | . . . . . . . . . . . . . . . . . .
s | . . . . . . . . . . . . . . . . . .
p | . . . . . . . . . . . . . . . . . .
m | . . . . . . . . . . . . . . . . . .
d | . . . . . . . . . . . . . . . . . .
z | . . . . . . . . . . . . . . . . . .
n | . . . . . . . . . . . . . . . . . .
u | . . . . . . . . . . . . . . . . . .
v | . . . . . . . . . . . . . . . . . .
t | . . . . . . . . . . . . . . . . . .

Range: efijntuv

wsum

    b g x h i j e f c s p m d z n u v t
----------------------------------------
b | i . i i i j e f . . p m d z n u v t
g | . . . . . . . . . . . . . . . . . .
x | i . i i i j e f . . p m d z n u v t
h | i . i i i j e f . . p m d z n u v t
i | i . i i i j e f . . p m d z n u v t
j | j . j j j j e f . . p m d z n u v t
e | e . e e e e e f . . p m d z n u v t
f | f . f f f f f f f . f f z z f f f f
c | . . . . . . . f . . p m d z n u v t
s | . . . . . . . . . . . . . . . . . .
p | p . p p p p p f p . . . . . . . . .
m | m . m m m m m f m . . . . . . . . .
d | d . d d d d d z d . . . . . . . . .
z | z . z z z z z z z . . . . . . . . .
n | n . n n n n n f n . . . . . . . . .
u | u . u u u u u f u . . . . . . . . .
v | v . v v v v v f v . . . . . . . . .
t | t . t t t t t f t . . . . . . . . .

Range: defijmnptuvz


Mathematics