Statistical Models
The following outlines the variadic function definitions provided with the kdb Insights ML Analytics library for various statistical models. Full breakdowns of the algorithms represented can be found here, this includes, via examples the use of the function returns for prediction, this is not outlined below explicitly.
Note
All arguments marked with an asterisk are optional and can be input using the notation defined in the function calls section of the model monitoring documentation.
Ordinary Least Squares(OLS) Regression
.ml.kxi.stats.OLS.fit
Fit a Ordinary Least Squares(OLS) model
.ml.kxi.stats.OLS.fit[X;y]
Parameters:
name | type | description |
---|---|---|
X |
any |
Endogenous variable determined by it's relationship with others. |
y |
any |
Exogenous variables which effect the endogenous variable. |
options:
name | type | description | default |
---|---|---|---|
trend |
boolean |
Is trend to be accounted for. | 1b |
Returns:
type | description |
---|---|
dictionary |
All information collected during the fitting of a model, along with prediction functionality. |
Examples:
Example 1: Fit a model using default configuration
// Generate data
q)endog:til 10
q)exog:3+2*til 10
// Fit model
q)show mdl1:.ml.kxi.stats.OLS.fit[endog;exog]
modelInfo| `coef`variables`statsDict!(-1.5 0.5;(+(,`name)!,`yIntercept`x0)!+`..
predict | {[config;exog]
modelInfo:config`modelInfo;
trend:`yIntercept i..
q)mdl1[`modelInfo]`variables
name | coef stdErr tStat pValue C195
----------| ---------------------------------------------------
yIntercept| -1.5 2.571224e-16 -5.833798e+15 0 5.929253e-16
x0 | 0.5 1.93265e-17 2.587121e+16 0 4.456699e-17
Example 2: Fit a model modifying the default behavior
// Generate data
q)endog:til 10
q)exog:3+2*til 10
// Fit model
q)show mdl2:.ml.kxi.stats.OLS.fit[endog;exog;.var.kw[`trend;0b]]
modelInfo| `coef`variables`statsDict!(,0.3983051;(+(,`name)!,,`x0)!+`coef`std..
predict | {[config;exog]
modelInfo:config`modelInfo;
trend:`yIntercept i..
q)mdl2[`modelInfo]`variables
name| coef stdErr tStat pValue C195
----| -----------------------------------------------------
x0 | 0.3983051 0.01622758 24.54495 2.875458e-10 0.03742086
Weighted Least Squares(WLS) Regression
.ml.kxi.stats.WLS.fit
Fit a Weighted Least Squares(WLS) model
.ml.kxi.stats.WLS.fit[X;y]
Parameters:
name | type | description |
---|---|---|
X |
any |
Endogenous variable determined by it's relationship with others. |
y |
any |
Exogenous variables which effect the endogenous variable. |
options:
name | type | description | default |
---|---|---|---|
weights |
float[] |
Weights to apply to X . |
:: |
trend |
boolean |
Is trend to be accounted for. | 1b |
Returns:
type | description |
---|---|
dictionary |
All information collected during the fitting of a model, along with prediction functionality. |
Examples:
Example 1: Fit a model using default configuration
// Generate data
q)endog:til 10
q)exog:3+2*til 10
// Fit model
q)show mdl1:.ml.kxi.stats.WLS.fit[endog;exog]
modelInfo| `coef`variables`statsDict`weights!(-1.5 0.5;(+(,`name)!,`yIntercep..
predict | {[config;exog]
modelInfo:config`modelInfo;
trend:`yIntercept i..
q)show each mdl1[`modelInfo]`variables`weights;
name | coef stdErr tStat pValue C195
----------| ---------------------------------------------------
yIntercept| -1.5 5.126997e-15 -2.925689e+14 0 1.182288e-14
x0 | 0.5 3.853687e-16 1.297459e+15 0 8.886618e-16
130.4302 46.95487 23.95657 14.49224 9.701419 6.945986 5.217208 4.06184 3.2517..
Example 2: Fit a model modifying the default behavior
// Generate data
q)endog:til 10
q)exog:3+2*til 10
// Fit model
q)params:.var.kwargs`trend`weights!(0b;10?1f)
q)show mdl2:.ml.kxi.stats.WLS.fit[endog;exog;params]
modelInfo| `coef`variables`statsDict`weights!(,0.4012137;(+(,`name)!,,`x0)!+`..
predict | {[config;exog]
modelInfo:config`modelInfo;
trend:`yIntercept i..
q)show each mdl2[`modelInfo]`variables`weights;
name| coef stdErr tStat pValue C195
----| -----------------------------------------------------
x0 | 0.4012137 0.01625652 24.68018 2.723961e-10 0.03748759
0.5232126 0.6587993 0.4064619 0.3612185 0.6559165 0.6997534 0.5315412 0.89392..