PostgreSQL Queries
This guide provides an overview of integrating the Stream Processor with a PostgreSQL database.
Mock Database Setup
This example uses a mock database which can be setup by following this guide
The Stream Processor provides a reader interface for issuing queries on a PostgreSQL database. The .qsp.read.fromPostgres
API can be used as a data source in a pipeline.
The following spec.q
will run a select query against a "finance" database and write it to
the console. The details of the database will be configured during deployment.
.qsp.run
.qsp.read.fromPostgres["SELECT * FROM stocks"; "finance"]
.qsp.write.toConsole[]
Deployment prerequisite
The example below requires initdb.sql
from this tutorial
to be in the current directory.
Using the following docker-compose.yaml
, use docker-compose
to launch the deployment.
version: "3.3"
services:
psql:
image: docker.io/bitnami/postgres:latest
ports:
- 5432:5432
environment:
POSTGRES_USER: postgres
POSTGRES_PASSWORD: iamsecure
restart: always
volumes:
- ./initdb.sql:/docker-entrypoint-initdb.d/initdb.sql
worker:
image: portal.dl.kx.com/kxi-sp-worker:1.9.0
volumes:
- .:/opt/kx/app/data
environment:
KDB_LICENSE_B64:
KXI_LOG_FORMAT: text
KXI_SP_SPEC: /opt/kx/app/data/example.q
KXI_SP_POSTGRES_SERVER: psql
KXI_SP_POSTGRES_PORT: 5432
KXI_SP_POSTGRES_DATABASE: finance
KXI_SP_POSTGRES_USERNAME: postgres
KXI_SP_POSTGRES_PASSWORD: iamsecure
depends_on:
- psql
To run the example, execute the following.
docker-compose up
The following spec.q
will run a select query against a "finance" database and write it to
the console. The details of the database will be configured during deployment.
.qsp.run
.qsp.read.fromPostgres["SELECT * FROM stocks"; "finance"]
.qsp.write.toConsole[]
To deploy the above pipeline in Kubernetes, first follow the setup for Kubernetes guide. The pipeline can be deployed using a port forwarded Coordinator service.
Deployment prerequisite
The example below requires a PostgreSQL database to be running in the cluster as setup in the Kubernetes section of this tutorial.
jobname=$(curl -X POST http://localhost:5000/pipeline/create -d \
"$(jq -n --arg spec "$(cat spec.q)" --arg pass "$PGPASSWORD" \
'{
name : "psql",
type : "spec",
config : { content: $spec },
settings : { minWorkers: "1", maxWorkers: "10" },
env : {
KXI_SP_POSTGRES_SERVER : "postgresql",
KXI_SP_POSTGRES_PORT : "5432",
KXI_SP_POSTGRES_DATABASE : "finance",
KXI_SP_POSTGRES_USERNAME : "postgres",
KXI_SP_POSTGRES_PASSWORD : $pass
}
}' | jq -asR .)" | jq -r .id)
Once deployed, check the console output of the deployed spwork
pod to see the result
of the query.