Skip to content

Registry Examples

The purpose of this page is to outline some example usage of the ML-Registry. For most users, these examples will be the first entry point to the use of the ML-Registry and outlines the function calls that are used across the interface when interacting with the Registry.

Basic Interactions

After installing the relevant dependencies, we can explore the q model registry functionality by following the examples below:

  • Start up a q session

    $ q init.q
    

  • Generate a new model registry

    q).ml.registry.new.registry[::;::];
    

  • Retrieve the 'modelStore' defining the current models within the registry

    q).ml.registry.get.modelStore[::;::];
    

  • Display the modelStore

    q)show modelStore
    registrationTime experimentName modelName uniqueID modelType version
    --------------------------------------------------------------------
    

  • Add several models to the registry

    // Increment minor versions
    q)modelName:"basic-model"
    q).ml.registry.set.model[::;::;{x}  ;modelName;"q";::]
    q).ml.registry.set.model[::;::;{x+1};modelName;"q";::]
    q).ml.registry.set.model[::;::;{x+2};modelName;"q";::]
    
    // Set major version and increment from '2.0'
    q).ml.registry.set.model[::;::;{x+3};modelName;"q";enlist[`major]!enlist 1b]
    q).ml.registry.set.model[::;::;{x+4};modelName;"q";::]
    
    // Add another version of '1.x'
    q).ml.registry.set.model[::;::;{x+5};modelName;"q";enlist[`majorVersion]!enlist 1]
    

  • Display the modelStore

    q)show modelStore
    registrationTime              experimentName modelName     uniqueID                             modelType version
    -----------------------------------------------------------------------------------------------------------------
    2021.07.20D18:26:17.904115000 "undefined"    "basic-model" e1636884-f7d8-93e5-9e72-fb23f7407473 ,"q"      1 0
    2021.07.20D18:26:17.914201000 "undefined"    "basic-model" edaa5221-8e4f-4aef-52df-25d8794b28fe ,"q"      1 1
    2021.07.20D18:26:17.925254000 "undefined"    "basic-model" a667b0f2-ce0c-e4bd-d870-6aab04579859 ,"q"      1 2
    2021.07.20D18:26:17.932588000 "undefined"    "basic-model" 56be5696-cd31-f846-57d2-86f0dd92fe2e ,"q"      2 0
    2021.07.20D18:26:17.939366000 "undefined"    "basic-model" bbf3120c-d75b-4f5a-21c0-368189291792 ,"q"      2 1
    2021.07.20D18:26:21.086221000 "undefined"    "basic-model" 5386500e-7cee-fdf6-a493-d7a5c03c8280 ,"q"      1 3
    

  • Add models associated with experiments

    q)modelName:"new-model"
    
    // Incrementing versions from '1.0'
    q).ml.registry.set.model[::;"testExperiment";{x}  ;modelName;"q";::]
    q).ml.registry.set.model[::;"testExperiment";{x+1};modelName;"q";enlist[`major]!enlist 1b]
    q).ml.registry.set.model[::;"testExperiment";{x+2};modelName;"q";::]
    

  • Display the modelStore

    q)show modelStore
    registrationTime              experimentName   modelName     uniqueID                             modelType version
    -------------------------------------------------------------------------------------------------------------------
    2021.07.20D18:26:17.904115000 "undefined"      "basic-model" e1636884-f7d8-93e5-9e72-fb23f7407473 ,"q"      1 0
    2021.07.20D18:26:17.914201000 "undefined"      "basic-model" edaa5221-8e4f-4aef-52df-25d8794b28fe ,"q"      1 1
    2021.07.20D18:26:17.925254000 "undefined"      "basic-model" a667b0f2-ce0c-e4bd-d870-6aab04579859 ,"q"      1 2
    2021.07.20D18:26:17.932588000 "undefined"      "basic-model" 56be5696-cd31-f846-57d2-86f0dd92fe2e ,"q"      2 0
    2021.07.20D18:26:17.939366000 "undefined"      "basic-model" bbf3120c-d75b-4f5a-21c0-368189291792 ,"q"      2 1
    2021.07.20D18:26:21.086221000 "undefined"      "basic-model" 5386500e-7cee-fdf6-a493-d7a5c03c8280 ,"q"      1 3
    2021.07.20D18:28:15.902359000 "testExperiment" "new-model"   86423ef3-cca0-7e2b-051a-e53fbaab761d ,"q"      1 0
    2021.07.20D18:28:15.911149000 "testExperiment" "new-model"   ab143727-4164-2f08-fd1f-66e1994873d7 ,"q"      2 0
    2021.07.20D18:28:19.294837000 "testExperiment" "new-model"   6fa608cc-0a87-46b5-d61c-ce2cf7abc0a6 ,"q"      2 1
    

  • Retrieve models from the registry

    // Retrieve version 1.1 of the 'basic-model'
    q).ml.registry.get.model[::;::;"basic-model";1 1]`model
    {x+1}
    
    // Retrieve the most up to date model associated with the 'testExperiment'
    q).ml.registry.get.model[::;"testExperiment";"new-model";::]`model
    {x+2}
    
    // Retrieve the last model added to the registry
    q).ml.registry.get.model[::;::;::;::]`model
    {x+2}
    

  • Delete models, experiments, and the registry

    // Delete the experiment from the registry
    q).ml.registry.delete.experiment[::;"testExperiment"]
    
    // Display the modelStore following experiment deletion
    q)show modelStore
    registrationTime              experimentName modelName     uniqueID                             modelType version
    -----------------------------------------------------------------------------------------------------------------
    2021.07.20D18:26:17.904115000 "undefined"    "basic-model" e1636884-f7d8-93e5-9e72-fb23f7407473 ,"q"      1 0
    2021.07.20D18:26:17.914201000 "undefined"    "basic-model" edaa5221-8e4f-4aef-52df-25d8794b28fe ,"q"      1 1
    2021.07.20D18:26:17.925254000 "undefined"    "basic-model" a667b0f2-ce0c-e4bd-d870-6aab04579859 ,"q"      1 2
    2021.07.20D18:26:17.932588000 "undefined"    "basic-model" 56be5696-cd31-f846-57d2-86f0dd92fe2e ,"q"      2 0
    2021.07.20D18:26:17.939366000 "undefined"    "basic-model" bbf3120c-d75b-4f5a-21c0-368189291792 ,"q"      2 1
    2021.07.20D18:26:21.086221000 "undefined"    "basic-model" 5386500e-7cee-fdf6-a493-d7a5c03c8280 ,"q"      1 3
    
    // Delete version 1.3 of the 'basic-model'
    q).ml.registry.delete.model[::;::;"basic-model";1 3];
    
    // Display the modelStore following deletion of 1.3 of the 'basic-model'
    q)show modelStore
    registrationTime              experimentName modelName     uniqueID                             modelType version
    -----------------------------------------------------------------------------------------------------------------
    2021.07.20D18:26:17.904115000 "undefined"    "basic-model" e1636884-f7d8-93e5-9e72-fb23f7407473 ,"q"      1 0
    2021.07.20D18:26:17.914201000 "undefined"    "basic-model" edaa5221-8e4f-4aef-52df-25d8794b28fe ,"q"      1 1
    2021.07.20D18:26:17.925254000 "undefined"    "basic-model" a667b0f2-ce0c-e4bd-d870-6aab04579859 ,"q"      1 2
    2021.07.20D18:26:17.932588000 "undefined"    "basic-model" 56be5696-cd31-f846-57d2-86f0dd92fe2e ,"q"      2 0
    2021.07.20D18:26:17.939366000 "undefined"    "basic-model" bbf3120c-d75b-4f5a-21c0-368189291792 ,"q"      2 1
    
    // Delete all models associated with the 'basic-model'
    q).ml.registry.delete.model[::;::;"basic-model";::]
    
    // Display the modelStore following deletion of 'basic-model'
    q)show modelStore
    registrationTime experimentName modelName uniqueID modelType version
    --------------------------------------------------------------------
    
    // Delete the registry
    q).ml.registry.delete.registry[::;::]
    

Externally generated model addition

Not all models that a user may want to use within the registry will have been generated in the q session being used to add the model to the registry. In reality, they may not have been generated using q/embedPy at all. For example, in the case of Python objects/models saved as pickled files/h5 files in the case of Keras models.

As such, the .ml.registry.set.model functionality also allows users to take the following file types (with appropriate limitations) and add them to the registry such that they can be retrieved.

Model Type File Type Qualifying Conditions
q q-binary Retrieved model must be a q projection, function or dictionary with a predict key
Graph q-binary Retrieved graph must be a dictionary with keys vertices and edges keys
Python pickled file The file must be loadable using joblib.load
Sklearn pickled file The file must be loadable using joblib.load and contain a predict method i.e. is a fit scikit-learn model
Keras HDF5 file The file must be loadable using keras.models.load_model and contain a predict method i.e. is a fit Keras model
PyTorch pickled file/jit The file must be loadable using torch.jit.load or torch.load, invocation of the function on load is expected to return predictions as a tensor

The following example invocations shows how q and sklearn models generated previously can be added to the registry:

  • Load the repository

    $ q init.q
    q)
    

  • Add a saved q model (Clustering algorithm) to the ML Registry

    // Generate and save to disk a q clustering model
    q)`:qModel set .ml.clust.kmeans.fit[2 200#400?1f;`e2dist;3;::]
    
    q).ml.registry.set.model[::;::;`:qModel;"qModel";"q";::]
    q).ml.registry.get.model[::;::;::;::]
    modelInfo| `registry`model`monitoring!(`description`modelInformation`experime..
    model    | `modelInfo`predict!(`repPts`clust`data`inputs!((0.7396003 0.256620..
    

  • Add a saved Sklearn model to the ML Registry

    // Generate and save an sklearn model to disk
    q)clf:.p.import[`sklearn.svm][`:SVC][]
    q)mdl:clf[`:fit][100 2#200?1f;100?3]
    q).p.import[`joblib][`:dump][mdl;"skmdl.pkl"]
    
    q).ml.registry.set.model[::;::;`:skmdl.pkl;"skModel";"sklearn";::]
    q).ml.registry.get.model[::;::;::;::]
    modelInfo| `registry`model`monitoring!(`description`modelInformation`experime..
    model    | {[f;x]embedPy[f;x]}[foreign]enlist
    

Adding Python requirements with individually set models

By default, the addition of models to the registry as individual analytics includes:

  1. Configuration outlined within config/modelInfo.json.
  2. The model (Python/q) within a model folder.
  3. A metrics folder for the storage of metrics associated with a model
  4. A parameters folder for the storage parameter information associated with the model or associated data
  5. A code folder which can be used to populate code that will be loaded on retrieval of a model.

What is omitted from this are the Python requirements that are necessary for the running of the models, these can be added as part of the config parameter in the following ways.

  1. Setting the value associated with the requirements key to 1b when in a virtualenv will pip freeze the current environment and save as a requirements.txt file.
  2. Setting the value associated with the requirements key to a symbol/hsym which points to a file will copy that file as the requirements.txt file for that model, thus allowing users to point to a previously generated requirements file.
  3. Setting the value associated with the requirements key to a list of strings will populate a requirements.txt file for the model containing each of the strings as an independent requirement

The following example shows how each of the above cases would be invoked:

  • Freezing the current environment using pip freeze when in a virtualenv

    q).ml.registry.set.model[::;::;{x};"reqrModel";"q";enlist[`requirements]!enlist 1b]
    

  • Pointing to an existing requirements file using relative or full path

    q).ml.registry.set.model[::;::;{x+1};"reqrModel";"q";enlist[`requirements]!enlist `:requirements.txt]
    

  • Adding a list of strings as the requirements

    q)requirements:enlist[`requirements]!enlist ("numpy";"pandas";"scikit-learn")
    q).ml.registry.set.model[::;::;{x+2};"reqrModel";"q";requirements]
    

Associate metrics with a model

Metric information can be persisted with a saved model to create a table within the model registry to which data associated with the model can be stored.

The following shows how interactions with this functionality are facilitated:

  • Set a model within the model registry

    q).ml.registry.set.model[::;"test";{x+1};"metricModel";"q";::];
    

  • Log various metrics associated with a named model

    q).ml.registry.log.metric[::;::;"metricModel";1 0;`func1;2.4]
    q).ml.registry.log.metric[::;::;"metricModel";1 0;`func1;3]
    q).ml.registry.log.metric[::;::;"metricModel";1 0;`func2;10.2]
    q).ml.registry.log.metric[::;::;"metricModel";1 0;`func3;9]
    q).ml.registry.log.metric[::;::;"metricModel";1 0;`func3;11.2]
    

  • Retrieve all metrics associated with the model metricModel

    q).ml.registry.get.metric[::;::;"metricModel";1 0;::]
    timestamp                     metricName metricValue
    ----------------------------------------------------
    2021.04.23D10:21:46.690671000 func1      2.4
    2021.04.23D10:21:52.523227000 func1      3
    2021.04.23D10:21:57.338468000 func2      10.2
    2021.04.23D10:22:04.314963000 func3      9
    2021.04.23D10:22:08.899301000 func3      11.2
    

  • Retrieve metric information related to a single named model

    q).ml.registry.get.metric[::;::;"metricModel";1 0;enlist[`metricName]!enlist `func1]
    timestamp                     metricName metricValue
    ----------------------------------------------------
    2021.04.23D10:21:46.690671000 func1      2.4
    2021.04.23D10:21:52.523227000 func1      3
    

Associating parameters with a model

Parameter information can be added to a saved model, this creates a json file within the models registry associated with a particular parameter.

  • Set a model within the model registry

    q).ml.registry.set.model[::;::;{x+2};"paramModel";"q";::]
    

  • Set parameters associated with the model

    q).ml.registry.set.parameters[::;::;"paramModel";1 0;"paramFile";`param1`param2!1 2]
    
    q).ml.registry.set.parameters[::;::;"paramModel";1 0;"paramFile2";`value1`value2]
    

  • Retrieve saved parameters associated with a model

    q).ml.registry.get.parameters[::;::;"paramModel";1 0;"paramFile"]
    param1| 1
    param2| 2
    
    q).ml.registry.get.parameters[::;::;"paramModel";1 0;"paramFile2"]
    "value1"
    "value2"