Skip to content

BigQuery quickstart

Run using kdb Insights

Run q and load the BigQuery library with

q)\l bq.q_

To access private projects during development, register an access token.

$ export GOOGLE_TOKEN=$(gcloud auth print-access-token)
$ qc
q)\l bq.q_
q).kurl.register (`oauth2; "*.googleapis.com"; ""; enlist[`access_token]!enlist getenv `GOOGLE_TOKEN)

Run as a Docker application

When you’re running inside a Docker container and want to access private BigQuery projects you will need to register your authentication token for BigQuery manually.

A simple way to do this is to pass the access token from your local computer into the container so that you can use it for registration.

Run the kdb-insights container and pass in the access token as an environment variable.

docker run --rm -it -v $QLIC:/tmp/qlic:ro -e GOOGLE_TOKEN=$(gcloud auth print-access-token) kdb-insights:X.Y.Z
q)\l bq_

Inside the container register with Kurl manually.

q).kurl.register (`oauth2; "*.googleapis.com"; ""; enlist[`access_token]!enlist getenv `GOOGLE_TOKEN)

Explore the workspace

The workspace contains all of the BigQuery resources and their available methods.

You can list the available resources

q).com_kx_bq.disc.listResources[]
`rowAccessPolicies`models`tabledata`datasets`tables`projects`routines`jobs

and get a description of the methods that a given resource supports.

q).com_kx_bq.disc.describeMethodsForResource`datasets
method httpMethod parameters           request             response                description   ..
-------------------------------------------------------------------------------------------------..
update PUT        `projectId`datasetId (,`$ref)!,"Dataset" (,`$ref)!,"Dataset"     "Updates infor..
list   GET        ,`projectId          ::                  (,`$ref)!,"DatasetList" "Lists all dat..
patch  PATCH      `projectId`datasetId (,`$ref)!,"Dataset" (,`$ref)!,"Dataset"     "Updates infor..
delete DELETE     `projectId`datasetId ::                  ::                      "Deletes the d..
get    GET        `projectId`datasetId ::                  (,`$ref)!,"Dataset"     "Returns the d..
insert POST       ,`projectId          (,`$ref)!,"Dataset" (,`$ref)!,"Dataset"     "Creates a new..

As you can see, each method takes some parameters. You can get some more detailed information on these parameters.

q).com_kx_bq.disc.getParametersForMethod `datasets.list
parameter type     location description                     required format
---------------------------------------------------------------------------..
projectId "string" "path"   "Project ID of the new dataset" 1        ::    

Your first request

From this information, you can make a request to list the datasets that you have access to, using .com_kx_bq.run.

q).com_kx_bq.run[`datasets.list; enlist[`projectId]!enlist "cloudpak"; ()]
kind    | "bigquery#datasetList"
etag    | "PiOY7GfDPfxBWU56fwyYbg=="
datasets| +`kind`id`datasetReference`location!(("bigquery#dataset";"bigquery#dataset";"bigquery#d..

The first parameter is the method name and the second parameter is a dictionary of the method parameters. We’ll get to the third parameter later.

The response column that is returned from .com_kx_bq.disc.describeMethodsForResource tells you what type of object is returned. In this case it is a DatasetList.

From the response, pull out the exact list of datasets using the datasets key.

q).com_kx_bq.run[`datasets.list; enlist[`projectId]!enlist "cloudpak"; ()]`datasets
kind               id                             datasetReference                               ..
-------------------------------------------------------------------------------------------------..
"bigquery#dataset" "cloudpak:kx_bma_bigquery_ds"  `datasetId`projectId!("kx_bma_bigquery_ds";"clo..
"bigquery#dataset" "cloudpak:kx_test_bigquery_ds" `datasetId`projectId!("kx_test_bigquery_ds";"cl..
"bigquery#dataset" "cloudpak:test_dataset"        `datasetId`projectId!("test_dataset";"cloudpak"..
"bigquery#dataset" "cloudpak:test_dataset2"       `datasetId`projectId!("test_dataset2";"cloudpak..
"bigquery#dataset" "cloudpak:weather"             `datasetId`projectId!("weather";"cloudpak")    ..

Your second request

From the description of the methods, you can see that methods that have a HTTP method of POST or PUT take a request object.

These request objects are the same as the response objects that are returned from the API.

To use the insert method, pass a Dataset as the request field.

From the docs, you can see that datasetReference is the only required field for the Dataset object. The value of datasetReference is another object that contains the fields datasetId and projectId. Of those fields, only datasetId is required.

So a minimal Dataset object would look like

{
    "datasetReference" : { 
        "datasetId" : "MyDataset"
    }

}

Using this information, you can create a new dataset using .com_kx_bq.run

q)request:enlist[`datasetReference]!enlist enlist[`datasetId]!enlist "MyDataset"

q).j.j request
"{\"datasetReference\":{\"datasetId\":\"MyDataset\"}}"

q).com_kx_bq.run[`datasets.insert; enlist[`projectId]!enlist "cloudpak"; .j.j request]
kind            | "bigquery#dataset"
etag            | "KQdjOs1o+xP1TfMFdstYog=="
id              | "cloudpak:MyDataset"
selfLink        | "https://bigquery.googleapis.com/bigquery/v2/projects/cloudpak/datasets/MyDatas..
datasetReference| `datasetId`projectId!("MyDataset";"cloudpak")
access          | (`role`specialGroup!("WRITER";"projectWriters");`role`specialGroup!("OWNER";"pr..
creationTime    | "1612263987441"
lastModifiedTime| "1612263987441"
location        | "US"

By now you have probably realized the third argument of .com_kx_bq.run is a JSON string containing the request for the method you are calling.

Next steps

You now have the tools to run any supported BigQuery method.

Explore some of the BigQuery public datasets and build something cool.


BigQuery API reference