Skip to content

How to perform a hybrid search

This section details how to execute a hybrid search in KDB.AI.

Added in v1.1.0.

Hybrid search in KDB.AI

In KDB.AI, a hybrid search returns results based on both dense and sparse vector search. The process includes querying and re-ranking of results across both vector sets. A parameter named alpha allows you to control the weight factor on the search for each algorithm.

Before we dive in, go to the understanding hybrid search page to make sure you're familiar with dense vectors, sparse vectors, tokenization, and the Best Matching 25 (BM25) algorithm.

A hybrid search blends a dense search with a sparse search. Therefore, you need to perform the following:

  1. Dense search
  2. Sparse search
  3. Hybrid search

Setup

Before you start, make sure you have:

For details on how to perform a standalone dense search, go to the How to conduct a similarity search page.

This section details how to perform a standalone sparse search.

2.1 Create table with a sparse index in KDB.AI

To use sparse vectors, you need to create a table with a sparse index.

  • Parameters
Option Description Type Required Default
k Term saturation real false 1.25
b Document length impact on relevance real false 0.75

The values of k and b can be modified in place at search time.

schema = {'columns': [
     {'name': 'id', 'pytype': 'int32'},
     {'name': 'sym', 'pytype': 'str'},
     {'name': 'time', 'pytype': 'datetime64[ns]'},
     {'name': 'text', 'pytype': 'dict',
         'sparseIndex': {'k': 1.25, 'b': 0.75}]}
{
 "type": "splayed",
 "columns": [
    {"name": "id", "type": "int"},
    {"name": "sym", "type": "char"},
    {"name": "time", "type": "timestamp"},
    {
     "name": "text",
 "type": "",
     "sparseIndex": {
        "k": 1.25,
        "b": 0.75,
     }
    }
   ]
  }

You can use these schemas to create the tables as shown on the Manage Tables page.

2.2 Insert sparse vectors

Before the data is inserted, the sparse vectors should be prepared as dictionaries with integer keys and values:

Here is an example of generating a pandas dataframe with sparse vectors as the payload for insert:

import numpy as np 
import pandas as pd 

# Connect with the KDB.AI table
documents = session.table('documents') 

# Generate data
n_rows = 2000

data = pd.DataFrame({
    'id': np.arange(n_rows, dtype='int16'),
    'tag': np.random.choice([True, False], n_rows),
    'author': [f'author{i}' for i in range(n_rows)],
    'length': np.random.randint(0, 1000, n_rows, dtype='int32'),
    'content': [f'document{i}' for i in range(n_rows)],
    'createdDate': pd.date_range(start='2020-01-01', periods=n_rows, freq='1D'),
    'sparse': [{int(y+1):1 for y in np.random.choice(range(1200),x+1,replace=False)} for x in np.random.choice(range(120),1000)]})

Here is an example of generating a JSON file with sparse vectors as the payload for insert:

[
  {
    "id": 21212,
    "tag": true,
    "author": "jill",
    "length": 68,
    "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
    "createdDate": "2023-10-11T00:00:00.000000000",
    "sparse": {'1996': 2, '101': 1, '11190': 1, '5598': 1, '2058': 1, '4231': 1, '102': 1}
  },
  {
    "id": 19376,
    "tag": false,
    "author": "joe",
    "length": 626,
    "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
    "createdDate": "2023-10-11T00:00:00.000000000",
    "sparse": {'1996': 1, '11190': 1, '2058': 1, '4231': 1, '102': 1}
  }
]

Now you can populate your table with data.

Populate the documents table with the above dataframe.

documents.insert(data)

Populate the documents table with a curl http request.

Save the following to a local file named insert.json:

{
  "table": "documents",
  "rows": [
    {
      "id": 21212,
      "tag": true,
      "author": "jill",
      "length": 68,
      "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
      "createdDate": "2023-10-11T00:00:00.000000000",
      "sparse": {'1996': 2, '101': 1, '11190': 1, '5598': 1, '2058': 1, '4231': 1, '102': 1}
    },
    {
      "id": 19376,
      "tag": false,
      "author": "joe",
      "length": 626,
      "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
      "createdDate": "2023-10-11T00:00:00.000000000",
      "sparse": {'1996': 1, '5598': 1, '2058': 1, '4231': 1, '102': 1}
    }
  ]
}

Ensure that the @ sign is included before the filename, otherwise, the file becomes URI-encoded.

curl -H 'Content-Type: application/json' -d @insert.json localhost:8082/api/v1/insert

The search endpoint is overloaded to accept lists of sparse vectors:

  • Parameters Index Options
Option Description Type Required Default
k Term saturation real false 1.25
b Document length impact on relevance real false 0.75
table.search(vectors=[{1:2,3:1}],n=3)
curl -s -H "Content-Type: application/json" localhost:8082/api/v1/kxi/search \
-d '{"table":"documents","n":3,"vectors":[{"1":2,"3":1}]}'

Combining the sparse and dense searches is the basis of the hybrid search. You can use the parameter alpha to determine the weighting of each leg of the search. A value of 0 means only the sparse leg is used and a value of 1 means the dense leg only is used.

For intermediate values, the following algorithm demonstrates an example that assumes:

  • the number of matches is 4.
  • alpha is 0.6.
  • the dense search returned vectors in order 3, 2, 1, 5.
  • the sparse search returned vectors in order 4, 3, 2, 1.
Vector Sparse Dense Re-ranked
Vector 1 3 4 3
Vector 2 2 3 2
Vector 3 1 2 1
Vector 4 null 1 4
Vector 5 5 null 5

We deduced the combined ranking (re-ranked) by the reciprocal rank fusion scores defined by the following formula:

\[ \textrm{score}(i) = \frac{1-\alpha}{1+\textrm{sparserank}(i)} + \frac{\alpha}{1+\textrm{denserank}(i)} \]

We computed the scores as below:

Since vector 1 occurs in the sparse search in position 3 and in the dense search in position 4, it receives a score of 0.22, as calculated below:

Since vector 2 occurs in the sparse search in position 2 and in the dense search in position 3, it receives a score of 0.28:

Since vector 3 occurs in the sparse search in position 1 and in the dense search in position 2, it receives a score of 0.4:

Since vector 4 doesn't occur in the sparse search and in the dense search in position 1, it receives a score of 0.2:

Since vector 5 occurs in the sparse search in position 5 and doesn't occur in the dense search, it receives a score of 0.08:

Comparing these five scores, the top four results are returned based on the sorted value.

Summary

To perform a hybrid search, you need to define the dense and sparse vectors in the schema. See the Schema section on the Manage Tables page.

schema = {'columns': [
     {'name': 'id', 'pytype': 'int32'},
     {'name': 'sym', 'pytype': 'str'},
     {'name': 'time', 'pytype': 'datetime64[ns]'},
     {'name': 'dense', 'pytype': 'float32',
         'vectorIndex': {'type': 'hnsw', 'dims': 10, 'metric': 'L2'}},
     {'name': 'sparse', 'pytype': 'dict',
         'sparseIndex': {'k': 1.25, 'b': 0.75}}]}
{
 "type": "splayed",
 "columns": [
    {"name": "id", "type": "int"},
    {"name": "sym", "type": "char"},
    {"name": "time", "type": "timestamp"},
    {
     "name": "dense",
     "type": "reals",
     "vectorIndex": {
        "type": "hnsw",
        "metric": "L2",
        "dims": 10}
    },
    {
     "name": "sparse",
     "type": "",
     "sparseIndex": {
        "k": 1.25,
        "b": 0.75}
    }
   ]
  }

Assuming a documents table exists with the correct schema, you can insert the data via Python (as a pandas dataframe) or via REST (as a JSON file):

Here is an example of generating a pandas dataframe with sparse and dense vectors as the payload for insert:

import numpy as np 
import pandas as pd 

# Connect with the KDB.AI table
documents = session.table('documents') 

# Generate data
n_rows = 2000

data = pd.DataFrame({
    'id': np.arange(n_rows, dtype='int16'),
    'tag': np.random.choice([True, False], n_rows),
    'author': [f'author{i}' for i in range(n_rows)],
    'length': np.random.randint(0, 1000, n_rows, dtype='int32'),
    'content': [f'document{i}' for i in range(n_rows)],
    'createdDate': pd.date_range(start='2020-01-01', periods=n_rows, freq='1D'),
    'dense': [np.random.rand(12).astype('float32') for _ in range(n_rows)],
    'sparse': [{int(y+1):1 for y in np.random.choice(range(1200),x+1,replace=False)} for x in np.random.choice(range(120),1000)]})

Here is an example of generating a JSON file with sparse and dense vectors as the payload for insert:

[
  {
    "id": 21212,
    "tag": true,
    "author": "jill",
    "length": 68,
    "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
    "createdDate": "2023-10-11T00:00:00.000000000",
    "dense": [0,1,2,3,4,5,6,7,8,9,10,11],
    "sparse": {'1996': 2, '101': 1, '11190': 1, '5598': 1, '2058': 1, '4231': 1, '102': 1}
  },
  {
    "id": 19376,
    "tag": false,
    "author": "joe",
    "length": 626,
    "content": "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789",
    "createdDate": "2023-10-11T00:00:00.000000000",
    "dense": [0,1,2,3,4,5,6,7,8,9,10,11],
    "sparse": {'1996': 1, '11190': 1, '2058': 1, '4231': 1, '102': 1}
  }
]

Assuming a documents table exists with a compliant schema, once you insert the data via Python of REST, perform the hybrid search:

table.hybrid_search(dense_vectors=[[0,0,0,0,0,0,0,0,0,0]],sparse_vectors=[{1:2,3:1}],n=3)
curl -s -H "Content-Type: application/json" localhost:8082/api/v1/kxi/hybridSearch \
-d '{"table":"documents","n":3,"sparseVectors":[{"1":2,"3":1}],"denseVectors"=[[0,0,0,0,0,0,0,0,0,0]]}'

Code example

This example demonstrates how to perform each of the three searches on some dummy data.

Click here to expand the code sample
import pandas as pd
import numpy as np
import kdbai_client as kdbai

### start session

session = kdbai.Session()

### create table

schema = {'columns': [
        {'name': 'id', 'pytype': 'int32'},
        {'name': 'sym', 'pytype': 'str'},
        {'name': 'dense', 'pytype': 'float32',
            'vectorIndex': {'type': 'hnsw', 'dims': 10, 'metric': 'L2'}},
        {'name': 'sparse', 'pytype': 'dict',
            'sparseIndex': {'k': 1.25, 'b': 0.75}}]}

table = session.create_table("example", schema)

### insert data

df = pd.DataFrame({
'id': range(1000),
'sym': np.random.choice(['AAA', 'BBB'], 1000),
'dense': [x.astype('float32') for x in np.random.rand(1000, 10)],
'sparse': [{int(y+1):1 for y in np.random.choice(range(1200),x+1,replace=False)} for x in np.random.choice(range(120),1000)]})

table.insert(df)

### Dense search

result = table.search([[0.1,0,0,0,0,0,0,0,0,0]],n=3)
print(result)

### Sparse search

result = table.search([{1:1,4:1,34:2,2:1}],n=3)
print(result)

### Hybrid search

result = table.hybrid_search(dense_vectors=[[0.1,0,0,0,0,0,0,0,0,0]],sparse_vectors=[{1:1,4:1,34:2,2:1}],n=3)
print(result)

### cleanup
session.table('example').drop()

Next steps

Now that you're familiar with hybrid search, you can do the following: