Database Creation and Management¶
This notebook provides a walkthrough of some of the functionality available for users looking to create and maintain large databases using PyKX.
This notebook refers to creating and maintaining large partitioned kdb+ databases using PyKX. Go to Q for Mortals for more in-depth information about partitioned databases in kdb+.
You can download this walkthrough as a .ipynb notebook file.
This walkthrough provides examples of the following tasks:
- Creating a database from a historical dataset
- Adding a new partition to the database
- Managing the on-disk database by:
- Renaming a table and column
- Creating a copy of a column to the database
- Applying a Python function to a column of the database
- Updating the data type of a column
- Adding a new table to the most recent partition of the database
For full information on the functions available, go to the API section.
Initial setup¶
Import all required libraries and create a temporary directory which will be used to store the database we create for this walkthrough.
import os
os.environ['PYKX_BETA_FEATURES'] = 'true'
import pykx as kx
from datetime import date
import tempfile
WARN: Failed to load KX Insights Core library 'objstor.q'.
tempdir = tempfile.TemporaryDirectory()
Database interactions are facilitated through use of the pykx.DB class. All methods/attributes used in this notebook are contained within this class. Only one DB object can exist at a time within a process.
Initialise the DB class to start. The expected input is the file path where you intend to save the partitioned database and its associated tables. In this case we're going to use the temporary directory we just created.
db = kx.DB(path = tempdir.name + '/db')
For details on any methods contained within this class, use the help method.
help(db.create)
Help on method create in module pykx.db:
create(table: pykx.wrappers.Table, table_name: str, partition: Union[int, str, pykx.wrappers.DateAtom] = None, *, format: Optional[str] = 'partitioned', by_field: Optional[str] = None, sym_enum: Optional[str] = None, log: Optional[bool] = True, compress: Optional[pykx.compress_encrypt.Compress] = None, encrypt: Optional[pykx.compress_encrypt.Encrypt] = None, change_dir: Optional[bool] = True, load_scripts: Optional[bool] = True) -> None method of pykx.db.DB instance
Create an on-disk partitioned table within a kdb+ database from a supplied
`#!python pykx.Table` object. Once generated this table will be accessible
as an attribute of the `#!python DB` class or a sub attribute of `#!python DB.table`.
Parameters:
table: The `#!python pykx.Table` object which is to be persisted to disk
table_name: The name with which the table will be persisted and accessible
once loaded and available as a `#!python pykx.PartitionedTable`
partition: The name of the column which is to be used to partition the data if
supplied as a `#!python str` or if supplied as non string object this is
used as the partition to which all data is persisted.
format: Is the table that's being created a 'splayed' or 'partitioned' table
by_field: A field of the table to be used as a by column, this column will be
the second column in the table (the first being the virtual column determined
by the partitioning column)
sym_enum: The name of the symbol enumeration table to be associated with the table
log: Print information about status while persisting the partitioned database
compress: `#!python pykx.Compress` initialized class denoting the compression settings
to be used when persisting a partition/partitions
encrypt: `#!python pykx.Encrypt` initialized class denoting the encryption setting
to be used when persisting a partition/partitions
Returns:
A `#!python None` object on successful invocation, the database class is
updated to contain attributes associated with the available created table
Examples:
Generate a partitioned database from a table containing multiple partitions.
```python
>>> import pykx as kx
>>> db = kx.DB(path = '/tmp/newDB')
>>> N = 1000
>>> qtab = kx.Table(data = {
... 'date': kx.q.asc(kx.random.random(N, kx.q('2020.01 2020.02 2020.03m'))),
... 'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
... 'price': kx.random.random(N, 10.0),
... 'size': kx.random.random(N, 100)
... })
>>> db.create(qtab, 'stocks', 'date', by_field = 'sym', sym_enum = 'symbols')
>>> db.tables
['stocks']
>>> db.stocks
pykx.PartitionedTable(pykx.q('
month sym price size
---------------------------
2020.01 AAPL 7.979004 85
2020.01 AAPL 5.931866 55
2020.01 AAPL 5.255477 49
2020.01 AAPL 8.15255 74
2020.01 AAPL 4.771067 80
..
'))
```
Add a table as a partition to an on-disk database.
```python
>>> import pykx as kx
>>> db = kx.DB(path = '/tmp/newDB')
>>> N = 333
>>> qtab = kx.Table(data = {
... 'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
... 'price': kx.random.random(N, 10.0),
... 'size': kx.random.random(N, 100)
... })
>>> db.create(qtab, 'stocks', kx.q('2020.04m'), by_field = 'sym', sym_enum = 'symbols')
>>> db.tables
['stocks']
>>> db.stocks
pykx.PartitionedTable(pykx.q('
month sym price size
---------------------------
2020.01 AAPL 7.979004 85
2020.01 AAPL 5.931866 55
2020.01 AAPL 5.255477 49
2020.01 AAPL 8.15255 74
2020.01 AAPL 4.771067 80
..
'))
```
Add a table as a partition to an on-disk database and apply gzip
compression to the persisted table
```python
>>> import pykx as kx
>>> db = kx.DB(path = '/tmp/newDB')
>>> N = 333
>>> qtab = kx.Table(data = {
... 'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
... 'price': kx.random.random(N, 10.0),
... 'size': kx.random.random(N, 100)
... })
>>> compress = kx.Compress(kx.CompressionAlgorithm.gzip, level=2)
>>> db.create(qtab, 'stocks', kx.q('2020.04m'), compress=compress)
>>> kx.q('{-21!hsym x}', '/tmp/newDB/2020.04/stocks/price')
pykx.Dictionary(pykx.q('
compressedLength | 2064
uncompressedLength| 2680
algorithm | 2i
logicalBlockSize | 17i
zipLevel | 2i
'))
```
Create the sample dataset¶
Create a dataset called trades containing time-series data spanning multiple dates, and columns of various types:
N = 1000000
trades = kx.Table(data={
'date': kx.random.random(N, [date(2020, 1, 1), date(2020, 1, 2)]),
'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
'price': kx.random.random(N, 10.0),
'size': kx.random.random(N, 1000)
})
Create the database¶
Create the database using the date column as the partition, and add trades as a table called trade_data within it.
db.create(trades, 'trade_data', 'date')
Writing Database Partition 2020.01.01 to table trade_data Writing Database Partition 2020.01.02 to table trade_data
This now exists as a table and is saved to disk.
db.tables
['trade_data']
When a table is saved, an attribute is added to the db class for it. For our newly generated table, this is db.trade_data.
db.trade_data
| date | sym | price | size | |
|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 7.079266 | 800 |
| 1 | 2020.01.01 | AAPL | 1.824321 | 65 |
| 2 | 2020.01.01 | MSFT | 2.408259 | 292 |
| 3 | 2020.01.01 | GOOG | 1.675438 | 7 |
| 4 | 2020.01.01 | AAPL | 8.311168 | 183 |
| 5 | 2020.01.01 | AAPL | 2.208693 | 989 |
| 6 | 2020.01.01 | MSFT | 6.068126 | 567 |
| 7 | 2020.01.01 | AAPL | 4.918926 | 794 |
| 8 | 2020.01.01 | AAPL | 9.331869 | 39 |
| 9 | 2020.01.01 | AAPL | 1.142611 | 507 |
| 10 | 2020.01.01 | AAPL | 2.685874 | 581 |
| 11 | 2020.01.01 | AAPL | 3.483591 | 163 |
| 12 | 2020.01.01 | AAPL | 0.4422525 | 466 |
| 13 | 2020.01.01 | MSFT | 7.406654 | 976 |
| 14 | 2020.01.01 | MSFT | 2.493871 | 171 |
| 15 | 2020.01.01 | AAPL | 9.242088 | 28 |
| 16 | 2020.01.01 | MSFT | 0.3954522 | 747 |
| 17 | 2020.01.01 | MSFT | 0.3441191 | 512 |
| 18 | 2020.01.01 | GOOG | 9.662762 | 998 |
| 19 | 2020.01.01 | AAPL | 9.601674 | 812 |
| 20 | 2020.01.01 | AAPL | 4.969858 | 910 |
| 21 | 2020.01.01 | GOOG | 1.048204 | 830 |
| 22 | 2020.01.01 | GOOG | 0.9817644 | 595 |
| 23 | 2020.01.01 | AAPL | 4.925185 | 976 |
| ... | ... | ... | ... | ... |
| 999999 | 2020.01.02 | GOOG | 1.470716 | 636 |
1,000,000 rows × 4 columns
Add a new partition to the database¶
Once a table has been generated, you can add more partitions to the database through reuse of the create method. In this case we are adding the new partition 2020.01.03 to the database.
N = 10000
new_day = kx.Table(data={
'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
'price': kx.random.random(N, 10.0),
'size': kx.random.random(N, 100)
})
db.create(new_day, 'trade_data', date(2020, 1, 3))
Writing Database Partition 2020-01-03 to table trade_data
Manage the database¶
This section covers updating the contents of a database. The examples below demonstrate a number of common tasks that would be completed regularly when updating a database.
The name of a table can be updated using the rename_table method. Below, we are updating the table trade_data to be called trade.
db.rename_table('trade_data', 'trades')
2025.10.21 11:52:37 renaming :/tmp/tmpd_aoxl7o/db/2020.01.01/trade_data to :/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 renaming :/tmp/tmpd_aoxl7o/db/2020.01.02/trade_data to :/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 renaming :/tmp/tmpd_aoxl7o/db/2020.01.03/trade_data to :/tmp/tmpd_aoxl7o/db/2020.01.03/trades
During the rename process, the attribute in the db class is also updated.
db.trades
| date | sym | price | size | |
|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 7.079266 | 800 |
| 1 | 2020.01.01 | AAPL | 1.824321 | 65 |
| 2 | 2020.01.01 | MSFT | 2.408259 | 292 |
| 3 | 2020.01.01 | GOOG | 1.675438 | 7 |
| 4 | 2020.01.01 | AAPL | 8.311168 | 183 |
| 5 | 2020.01.01 | AAPL | 2.208693 | 989 |
| 6 | 2020.01.01 | MSFT | 6.068126 | 567 |
| 7 | 2020.01.01 | AAPL | 4.918926 | 794 |
| 8 | 2020.01.01 | AAPL | 9.331869 | 39 |
| 9 | 2020.01.01 | AAPL | 1.142611 | 507 |
| 10 | 2020.01.01 | AAPL | 2.685874 | 581 |
| 11 | 2020.01.01 | AAPL | 3.483591 | 163 |
| 12 | 2020.01.01 | AAPL | 0.4422525 | 466 |
| 13 | 2020.01.01 | MSFT | 7.406654 | 976 |
| 14 | 2020.01.01 | MSFT | 2.493871 | 171 |
| 15 | 2020.01.01 | AAPL | 9.242088 | 28 |
| 16 | 2020.01.01 | MSFT | 0.3954522 | 747 |
| 17 | 2020.01.01 | MSFT | 0.3441191 | 512 |
| 18 | 2020.01.01 | GOOG | 9.662762 | 998 |
| 19 | 2020.01.01 | AAPL | 9.601674 | 812 |
| 20 | 2020.01.01 | AAPL | 4.969858 | 910 |
| 21 | 2020.01.01 | GOOG | 1.048204 | 830 |
| 22 | 2020.01.01 | GOOG | 0.9817644 | 595 |
| 23 | 2020.01.01 | AAPL | 4.925185 | 976 |
| ... | ... | ... | ... | ... |
| 1009999 | 2020.01.03 | AAPL | 9.750387 | 99 |
1,010,000 rows × 4 columns
To rename a column in a table, use the rename_column method. For example, let's rename the sym column (in the trade table) to ticker.
db.rename_column('trades', 'sym', 'ticker')
2025.10.21 11:52:37 renaming sym to ticker in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades
2025.10.21 11:52:37 renaming sym to ticker in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 renaming sym to ticker in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
db.trades
| date | ticker | price | size | |
|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 7.079266 | 800 |
| 1 | 2020.01.01 | AAPL | 1.824321 | 65 |
| 2 | 2020.01.01 | MSFT | 2.408259 | 292 |
| 3 | 2020.01.01 | GOOG | 1.675438 | 7 |
| 4 | 2020.01.01 | AAPL | 8.311168 | 183 |
| 5 | 2020.01.01 | AAPL | 2.208693 | 989 |
| 6 | 2020.01.01 | MSFT | 6.068126 | 567 |
| 7 | 2020.01.01 | AAPL | 4.918926 | 794 |
| 8 | 2020.01.01 | AAPL | 9.331869 | 39 |
| 9 | 2020.01.01 | AAPL | 1.142611 | 507 |
| 10 | 2020.01.01 | AAPL | 2.685874 | 581 |
| 11 | 2020.01.01 | AAPL | 3.483591 | 163 |
| 12 | 2020.01.01 | AAPL | 0.4422525 | 466 |
| 13 | 2020.01.01 | MSFT | 7.406654 | 976 |
| 14 | 2020.01.01 | MSFT | 2.493871 | 171 |
| 15 | 2020.01.01 | AAPL | 9.242088 | 28 |
| 16 | 2020.01.01 | MSFT | 0.3954522 | 747 |
| 17 | 2020.01.01 | MSFT | 0.3441191 | 512 |
| 18 | 2020.01.01 | GOOG | 9.662762 | 998 |
| 19 | 2020.01.01 | AAPL | 9.601674 | 812 |
| 20 | 2020.01.01 | AAPL | 4.969858 | 910 |
| 21 | 2020.01.01 | GOOG | 1.048204 | 830 |
| 22 | 2020.01.01 | GOOG | 0.9817644 | 595 |
| 23 | 2020.01.01 | AAPL | 4.925185 | 976 |
| ... | ... | ... | ... | ... |
| 1009999 | 2020.01.03 | AAPL | 9.750387 | 99 |
1,010,000 rows × 4 columns
To safely apply a function to modify the price column within the database, first create a copy of the column.
db.copy_column('trades', 'price', 'price_copy')
2025.10.21 11:52:37 copying price to price_copy in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 copying price to price_copy in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 copying price to price_copy in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
db.trades
| date | ticker | price | size | price_copy | |
|---|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 7.079266 | 800 | 7.079266 |
| 1 | 2020.01.01 | AAPL | 1.824321 | 65 | 1.824321 |
| 2 | 2020.01.01 | MSFT | 2.408259 | 292 | 2.408259 |
| 3 | 2020.01.01 | GOOG | 1.675438 | 7 | 1.675438 |
| 4 | 2020.01.01 | AAPL | 8.311168 | 183 | 8.311168 |
| 5 | 2020.01.01 | AAPL | 2.208693 | 989 | 2.208693 |
| 6 | 2020.01.01 | MSFT | 6.068126 | 567 | 6.068126 |
| 7 | 2020.01.01 | AAPL | 4.918926 | 794 | 4.918926 |
| 8 | 2020.01.01 | AAPL | 9.331869 | 39 | 9.331869 |
| 9 | 2020.01.01 | AAPL | 1.142611 | 507 | 1.142611 |
| 10 | 2020.01.01 | AAPL | 2.685874 | 581 | 2.685874 |
| 11 | 2020.01.01 | AAPL | 3.483591 | 163 | 3.483591 |
| 12 | 2020.01.01 | AAPL | 0.4422525 | 466 | 0.4422525 |
| 13 | 2020.01.01 | MSFT | 7.406654 | 976 | 7.406654 |
| 14 | 2020.01.01 | MSFT | 2.493871 | 171 | 2.493871 |
| 15 | 2020.01.01 | AAPL | 9.242088 | 28 | 9.242088 |
| 16 | 2020.01.01 | MSFT | 0.3954522 | 747 | 0.3954522 |
| 17 | 2020.01.01 | MSFT | 0.3441191 | 512 | 0.3441191 |
| 18 | 2020.01.01 | GOOG | 9.662762 | 998 | 9.662762 |
| 19 | 2020.01.01 | AAPL | 9.601674 | 812 | 9.601674 |
| 20 | 2020.01.01 | AAPL | 4.969858 | 910 | 4.969858 |
| 21 | 2020.01.01 | GOOG | 1.048204 | 830 | 1.048204 |
| 22 | 2020.01.01 | GOOG | 0.9817644 | 595 | 0.9817644 |
| 23 | 2020.01.01 | AAPL | 4.925185 | 976 | 4.925185 |
| ... | ... | ... | ... | ... | ... |
| 1009999 | 2020.01.03 | AAPL | 9.750387 | 99 | 9.750387 |
1,010,000 rows × 5 columns
You can now apply a function to the copied column without the risk of losing the original data. Below, let's modify the copied column by multiplying the contents by 2.
db.apply_function('trades', 'price_copy', kx.q('{2*x}'))
2025.10.21 11:52:37 resaving column price_copy (type 9) in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 resaving column price_copy (type 9) in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 resaving column price_copy (type 9) in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
db.trades
| date | ticker | price | size | price_copy | |
|---|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 7.079266 | 800 | 14.15853 |
| 1 | 2020.01.01 | AAPL | 1.824321 | 65 | 3.648642 |
| 2 | 2020.01.01 | MSFT | 2.408259 | 292 | 4.816519 |
| 3 | 2020.01.01 | GOOG | 1.675438 | 7 | 3.350875 |
| 4 | 2020.01.01 | AAPL | 8.311168 | 183 | 16.62234 |
| 5 | 2020.01.01 | AAPL | 2.208693 | 989 | 4.417385 |
| 6 | 2020.01.01 | MSFT | 6.068126 | 567 | 12.13625 |
| 7 | 2020.01.01 | AAPL | 4.918926 | 794 | 9.837851 |
| 8 | 2020.01.01 | AAPL | 9.331869 | 39 | 18.66374 |
| 9 | 2020.01.01 | AAPL | 1.142611 | 507 | 2.285222 |
| 10 | 2020.01.01 | AAPL | 2.685874 | 581 | 5.371748 |
| 11 | 2020.01.01 | AAPL | 3.483591 | 163 | 6.967183 |
| 12 | 2020.01.01 | AAPL | 0.4422525 | 466 | 0.8845049 |
| 13 | 2020.01.01 | MSFT | 7.406654 | 976 | 14.81331 |
| 14 | 2020.01.01 | MSFT | 2.493871 | 171 | 4.987742 |
| 15 | 2020.01.01 | AAPL | 9.242088 | 28 | 18.48418 |
| 16 | 2020.01.01 | MSFT | 0.3954522 | 747 | 0.7909045 |
| 17 | 2020.01.01 | MSFT | 0.3441191 | 512 | 0.6882382 |
| 18 | 2020.01.01 | GOOG | 9.662762 | 998 | 19.32552 |
| 19 | 2020.01.01 | AAPL | 9.601674 | 812 | 19.20335 |
| 20 | 2020.01.01 | AAPL | 4.969858 | 910 | 9.939716 |
| 21 | 2020.01.01 | GOOG | 1.048204 | 830 | 2.096408 |
| 22 | 2020.01.01 | GOOG | 0.9817644 | 595 | 1.963529 |
| 23 | 2020.01.01 | AAPL | 4.925185 | 976 | 9.850371 |
| ... | ... | ... | ... | ... | ... |
| 1009999 | 2020.01.03 | AAPL | 9.750387 | 99 | 19.50077 |
1,010,000 rows × 5 columns
Once you are happy with the new values within the price_copy column, you can safely delete the price column, then rename the price_copy column to be called price.
db.delete_column('trades', 'price')
db.rename_column('trades', 'price_copy', 'price')
2025.10.21 11:52:37 deleting column price from `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 deleting column price from `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 deleting column price from `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades 2025.10.21 11:52:37 renaming price_copy to price in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 renaming price_copy to price in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 renaming price_copy to price in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
db.trades
| date | ticker | size | price | |
|---|---|---|---|---|
| 0 | 2020.01.01 | MSFT | 800 | 14.15853 |
| 1 | 2020.01.01 | AAPL | 65 | 3.648642 |
| 2 | 2020.01.01 | MSFT | 292 | 4.816519 |
| 3 | 2020.01.01 | GOOG | 7 | 3.350875 |
| 4 | 2020.01.01 | AAPL | 183 | 16.62234 |
| 5 | 2020.01.01 | AAPL | 989 | 4.417385 |
| 6 | 2020.01.01 | MSFT | 567 | 12.13625 |
| 7 | 2020.01.01 | AAPL | 794 | 9.837851 |
| 8 | 2020.01.01 | AAPL | 39 | 18.66374 |
| 9 | 2020.01.01 | AAPL | 507 | 2.285222 |
| 10 | 2020.01.01 | AAPL | 581 | 5.371748 |
| 11 | 2020.01.01 | AAPL | 163 | 6.967183 |
| 12 | 2020.01.01 | AAPL | 466 | 0.8845049 |
| 13 | 2020.01.01 | MSFT | 976 | 14.81331 |
| 14 | 2020.01.01 | MSFT | 171 | 4.987742 |
| 15 | 2020.01.01 | AAPL | 28 | 18.48418 |
| 16 | 2020.01.01 | MSFT | 747 | 0.7909045 |
| 17 | 2020.01.01 | MSFT | 512 | 0.6882382 |
| 18 | 2020.01.01 | GOOG | 998 | 19.32552 |
| 19 | 2020.01.01 | AAPL | 812 | 19.20335 |
| 20 | 2020.01.01 | AAPL | 910 | 9.939716 |
| 21 | 2020.01.01 | GOOG | 830 | 2.096408 |
| 22 | 2020.01.01 | GOOG | 595 | 1.963529 |
| 23 | 2020.01.01 | AAPL | 976 | 9.850371 |
| ... | ... | ... | ... | ... |
| 1009999 | 2020.01.03 | AAPL | 99 | 19.50077 |
1,010,000 rows × 4 columns
To convert the data type of a column, use the set_column_type method. Before we do that, let's look at the metadata information for the table using the meta method:
kx.q.meta(db.trades)
| t | f | a | |
|---|---|---|---|
| c | |||
| date | "d" | ||
| ticker | "s" | ||
| size | "j" | ||
| price | "f" |
Currently the size column is the type LongAtom. Let's update this to be a type ShortAtom:
db.set_column_type('trades', 'size', kx.ShortAtom)
2025.10.21 11:52:37 resaving column size (type 5) in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 resaving column size (type 5) in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 resaving column size (type 5) in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
Now let's apply the grouped attribute to the size column. For more information on attributes in kdb+, refer to the Q for Mortals Attributes section.
db.set_column_attribute('trades', 'ticker', 'grouped')
2025.10.21 11:52:37 resaving column ticker (type 20) in `:/tmp/tmpd_aoxl7o/db/2020.01.01/trades 2025.10.21 11:52:37 resaving column ticker (type 20) in `:/tmp/tmpd_aoxl7o/db/2020.01.02/trades 2025.10.21 11:52:37 resaving column ticker (type 20) in `:/tmp/tmpd_aoxl7o/db/2020.01.03/trades
Let's revisit the metadata of the table to ensure they have been applied correctly.
kx.q.meta(db.trades)
| t | f | a | |
|---|---|---|---|
| c | |||
| date | "d" | ||
| ticker | "s" | g | |
| size | "h" | ||
| price | "f" |
Onboard your next table¶
Now that you have successfully set up one table, you may want to add a second table. We follow the same method as before and create the quotes table using the create method. In this example, the quotes table only contains data for 2020.01.03:
quotes = kx.Table(data={
'sym': kx.random.random(N, ['AAPL', 'GOOG', 'MSFT']),
'open': kx.random.random(N, 10.0),
'high': kx.random.random(N, 10.0),
'low': kx.random.random(N, 10.0),
'close': kx.random.random(N, 10.0)
})
db.create(quotes, 'quotes', date(2020, 1, 3), by_field = 'sym')
Writing Database Partition 2020-01-03 to table quotes
All tables within a database must contain the same partition structure. To ensure you can access the new table, the quotes table needs to exist in every partition within the database, even if there is no data for that partition. This is called backfilling data. For the partitions where the quotes table is missing, we use the fill_database method:
db.fill_database()
Successfully filled missing tables to partition: :/tmp/tmpd_aoxl7o/db/2020.01.02 Successfully filled missing tables to partition: :/tmp/tmpd_aoxl7o/db/2020.01.01
Now that the database has resolved the missing tables within the partitions, we can view the new quotes table:
db.quotes
| date | sym | open | high | low | close | |
|---|---|---|---|---|---|---|
| 0 | 2020.01.03 | AAPL | 8.204026 | 0.9115201 | 3.916864 | 9.813545 |
| 1 | 2020.01.03 | AAPL | 8.092754 | 6.019578 | 0.08513137 | 2.825277 |
| 2 | 2020.01.03 | AAPL | 1.425043 | 8.881719 | 4.285461 | 7.820761 |
| 3 | 2020.01.03 | AAPL | 7.172736 | 3.33985 | 5.999403 | 3.010211 |
| 4 | 2020.01.03 | AAPL | 2.974185 | 1.559372 | 2.76356 | 5.182052 |
| 5 | 2020.01.03 | AAPL | 3.200759 | 7.485088 | 7.928813 | 6.437041 |
| 6 | 2020.01.03 | AAPL | 7.749599 | 5.559444 | 0.3300404 | 9.424896 |
| 7 | 2020.01.03 | AAPL | 4.885961 | 4.677432 | 8.288318 | 4.366883 |
| 8 | 2020.01.03 | AAPL | 7.412891 | 5.082189 | 9.214036 | 7.900838 |
| 9 | 2020.01.03 | AAPL | 6.625847 | 9.792139 | 6.208818 | 9.195079 |
| 10 | 2020.01.03 | AAPL | 2.075797 | 5.340321 | 0.4038709 | 0.7533655 |
| 11 | 2020.01.03 | AAPL | 4.797642 | 8.373317 | 4.98156 | 6.299731 |
| 12 | 2020.01.03 | AAPL | 0.8688765 | 1.967616 | 3.349573 | 4.094004 |
| 13 | 2020.01.03 | AAPL | 2.684143 | 0.05767352 | 8.878174 | 2.166685 |
| 14 | 2020.01.03 | AAPL | 3.181093 | 4.686113 | 0.8967613 | 7.39341 |
| 15 | 2020.01.03 | AAPL | 3.630268 | 0.4563809 | 2.89025 | 6.428857 |
| 16 | 2020.01.03 | AAPL | 7.342469 | 9.298404 | 7.098509 | 1.698009 |
| 17 | 2020.01.03 | AAPL | 1.293144 | 8.125834 | 7.214184 | 5.946857 |
| 18 | 2020.01.03 | AAPL | 8.051322 | 1.446192 | 9.436185 | 4.824975 |
| 19 | 2020.01.03 | AAPL | 1.018781 | 1.299401 | 1.18181 | 0.6091787 |
| 20 | 2020.01.03 | AAPL | 4.002909 | 4.115772 | 5.036211 | 1.680549 |
| 21 | 2020.01.03 | AAPL | 0.9864104 | 4.75085 | 0.5140735 | 2.468647 |
| 22 | 2020.01.03 | AAPL | 8.388561 | 6.170405 | 1.067153 | 2.034476 |
| 23 | 2020.01.03 | AAPL | 9.258428 | 7.146021 | 2.311644 | 4.770905 |
| ... | ... | ... | ... | ... | ... | ... |
| 9999 | 2020.01.03 | MSFT | 2.832818 | 1.466171 | 3.457545 | 5.985203 |
10,000 rows × 6 columns
Finally, to view the amount of saved data, count the number of rows per partition using partition_count:
db.partition_count()
| quotes | trades | |
|---|---|---|
| 2020.01.01 | 0 | 500425 |
| 2020.01.02 | 0 | 499575 |
| 2020.01.03 | 10000 | 10000 |
Clean up temporary database created¶
tempdir.cleanup()