Indexing PyKX Objects
An introduction to indexing within PyKX
Indexing in q works differently than you may be used to, and that behavior largely carries over into PyKX for indexing K objects. For more information about how indexing in q works (and by extension, how indexing K objects in PyKX work), refer to the following sections of the q tutorial book Q For Mortals:
Indexes used on K objects in PyKX are converted to equivalent K objects in q using the toq module, just like any other Python to q conversion. To guarantee that the index used against a K object is what you intend it to be, you may perform the conversion of the index yourself before applying it. When K objects are used as the index for another K object, the index object is applied to the pykx.Collection
object as they would be in q; i.e. as described in Q For Mortals.
The following provides some examples of applying indexing to various q objects:
Basic Vectors Indexing
Indexing in PyKX spans elements 0
to element N-1
where N
is the length of the object being indexed.
Single element indexing
Single element indexing works similarly to any other standard Python sequence. Similar to Numpy PyKX supports negative indices to allow retrieval of indexes at the end of an array. For example:
>>> x = kx.q.til(10)
>>> x[2]
pykx.LongAtom(pykx.q('2'))
>>> x[-2]
pykx.LongAtom(pykx.q('8'))
>>> y = kx.CharVector('abcdefg')
>>> y[0]
pykx.CharAtom(pykx.q('"a"'))
>>> y[-2]
pykx.CharAtom(pykx.q('"f"'))
Similar to Numpy indexing an array out of bounds will result in an IndexError
being raised.
>>> x = kx.q.til(5)
>>> x[6]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/anaconda3/lib/python3.8/site-packages/pykx/wrappers.py", line 1165, in __getitem__
return q('@', self, _idx_to_k(key, _wrappers.k_n(self)))
File "/usr/local/anaconda3/lib/python3.8/site-packages/pykx/wrappers.py", line 212, in _idx_to_k
raise IndexError('index out of range')
IndexError: index out of range
N Dimensional list vectors can also be manipulated using single element indexing as follows
>>> x = kx.random.random([4, 4], 1.0)
>>> x
pykx.List(pykx.q('
0.5294808 0.6916099 0.2296615 0.6919531
0.4707883 0.6346716 0.9672398 0.2306385
0.949975 0.439081 0.5759051 0.5919004
0.8481567 0.389056 0.391543 0.08123546
'))
>>> x[0][3]
pykx.FloatAtom(pykx.q('0.6919531'))
Slicing
Slicing vectors in PyKX is more simplistic than the functionality provided by Numpy. Vectors of N dimensions are indexed using obj[start:stop:step]
semantics. This slice syntax operates where start
is the starting index, stop
is the stopping index and step
is the number of steps between the elements where step
is non zero
>>> x = kx.q.til(10)
>>> x[2:4]
pykx.LongVector(pykx.q('2 3'))
>>> x[5:]
pykx.LongVector(pykx.q('5 6 7 8 9'))
>>> x[:8:2]
pykx.LongVector(pykx.q('0 2 4 6'))
>>> x = kx.random.random([4, 4], 1.0)
>>> x[:2]
pykx.List(pykx.q('
0.1477547 0.274227 0.5635053 0.883823
0.2439194 0.6718125 0.8639591 0.8439807
'))
>>> y = kx.CharVector('abcdefg')
>>> y[2:4]
pykx.CharVector(pykx.q('"cd"'))
>>> y[3:]
pykx.CharVector(pykx.q('"defg"'))
>>> y[:6:2]
pykx.CharVector(pykx.q('"ace"'))
Negative slicing works in a similar way and can be used for list
, vector
and table
objects too.
>>> list = kx.q('("a"; 2; 3.3; `four)')
>>> list[-3:]
pykx.List(pykx.q('
2
3.3
`four
'))
>>> vector = kx.q.til(5)
>>> vector[:-1]
pykx.LongVector(pykx.q('0 1 2 3'))
>>> table = kx.Table(data = {
... 'a': [1, 2, 3],
... 'b': [4, 5, 6],
... 'c': [7, 8, 9],
... })
>>> table[-2:]
pykx.Table(pykx.q('
a b c
-----
2 5 8
3 6 9
'))
Assigning and Adding Values to Vectors/Lists
Vector assignment in PyKX operates similarly to that provided by Numpy and operations supported on basic Python lists. As with the previous sections this functionality supports both individual element assignment and slice assignment as follows:
>>> vec = kx.q.til(10)
>>> vec
pykx.LongVector(pykx.q('0 1 2 3 4 5 6 7 8 9'))
>>> vec[1] = 15
>>> vec
pykx.LongVector(pykx.q('0 15 2 3 4 5 6 7 8 9'))
>>> vec[-1] = 10
>>> vec
pykx.LongVector(pykx.q('0 15 2 3 4 5 6 7 8 10'))
>>> vec[:5] = 0
>>> vec
pykx.LongVector(pykx.q('0 0 0 0 0 5 6 7 8 10'))
N-Dimensional vector element assignment not supported
>>> x = kx.random.random([4, 4], 1.0)
>>> x
pykx.List(pykx.q('
0.3927524 0.5170911 0.5159796 0.4066642
0.1780839 0.3017723 0.785033 0.5347096
0.7111716 0.411597 0.4931835 0.5785203
0.08388858 0.1959907 0.375638 0.6137452
'))
>>> x[0][2] = 3.0
>>> x
pykx.List(pykx.q('
0.3927524 0.5170911 0.5159796 0.4066642
0.1780839 0.3017723 0.785033 0.5347096
0.7111716 0.411597 0.4931835 0.5785203
0.08388858 0.1959907 0.375638 0.6137452
'))
In addition to positional assignment users can make use of the append
and extend
methods for pykx.*Vector
and pykx.List
objects. When appending objects to a list this can be achieved for single item assignments, while extend will look to add multiple elements to a Vector or List object. The following tabbed section shows the use of append and extend operations including failing cases.
>>> import pykx as kx
>>> qvec = kx.random.random(3, 1.0, seed = 42)
>>> qvec
pykx.FloatVector(pykx.q('0.7742128 0.7049724 0.5212126'))
>>> qvec.append(1.1)
>>> qvec
pykx.FloatVector(pykx.q('0.7742128 0.7049724 0.5212126 1.1'))
>>>
>>> qvec.append([1.2, 1.3, 1.4])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/anaconda3/lib/python3.8/site-packages/pykx/wrappers.py", line 1262, in append
raise QError(f'Appending data of type: {type(data)} '
pykx.exceptions.QError: Appending data of type: <class 'pykx.wrappers.FloatVector'> to vector of type: <class 'pykx.wrappers.FloatVector'> not supported
>>>
>>> qvec.extend([1.2, 1.3, 1.4])
pykx.FloatVector(pykx.q('0.7742128 0.7049724 0.5212126 1.1 1.2 1.3 1.4'))
>>>
>>> qvec.extend([1, 2, 3])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/anaconda3/lib/python3.8/site-packages/pykx/wrappers.py", line 1271, in extend
raise QError(f'Extending data of type: {type(data)} '
pykx.exceptions.QError: Extending data of type: <class 'pykx.wrappers.LongVector'> to vector of type: <class 'pykx.wrappers.FloatVector'> not supported
>>> qlist = kx.toq([1, 2, 1.3])
>>> qlist
pykx.List(pykx.q('
1
2
1.3
'))
>>> qlist.append({'x': 1})
>>> qlist
pykx.List(pykx.q('
1
2
1.3
(,`x)!,1
'))
>>> qlist.extend([1, 2])
>>> qlist
pykx.List(pykx.q('
1
2
1.3
(,`x)!,1
1
2
'))
Indexing Non Vector Objects
In addition to being able to index and slice PyKX vector and list objects it is also possible to apply index and slicing semantics on PyKX Table objects. Application of slice/index semantics on tabular objects will return table like objects
>>> import pandas as pd
>>> from random import random
>>> from uuid import uuid4
>>> df = pd.DataFrame.from_dict({
'x': [random() for _ in range(10)],
'x1': [random() for _ in range(10)],
'x2': [uuid4() for _ in range(10)]
})
>>> tab = kx.toq(df)
>>> tab
pykx.Table(pykx.q('
x x1 x2
-----------------------------------------------------------
0.1872634 0.4176994 c9555cdf-57db-28a8-bf6c-67f6ee711a5f
0.8416288 0.01920741 3ecca92c-aae6-f796-38c9-80f4da70a89d
0.7250709 0.8761714 6417d4b3-3fc6-e35a-1c34-8c5c3327b1e8
0.481804 0.7575856 4040cd34-c49e-587b-e546-e1342bf1dd85
0.9351307 0.6030223 e8327955-bd9a-246a-0b17-fbf8f05fd28a
0.7093398 0.1811364 54a1959c-997c-6c57-1ff2-a0f3e845f01d
0.9452199 0.2329662 008bded0-3383-f19b-1d18-abfb199b1ac1
0.7092423 0.250046 6f54a161-49e7-f707-0054-626b867fb02f
0.002184472 0.0737272 f294c3cb-a6da-e15d-c8e0-3a848d2abf10
0.06670537 0.3186642 cd17ee98-c089-10a3-8992-d437a566f081
'))
>>> tab[3]
x x1 x2
-----------------------------------------------------------
0.481804 0.7575856 4040cd34-c49e-587b-e546-e1342bf1dd85
'))
>>> tab[:5]
pykx.Table(pykx.q('
x x1 x2
---------------------------------------------------------
0.1872634 0.4176994 c9555cdf-57db-28a8-bf6c-67f6ee711a5f
0.8416288 0.01920741 3ecca92c-aae6-f796-38c9-80f4da70a89d
0.7250709 0.8761714 6417d4b3-3fc6-e35a-1c34-8c5c3327b1e8
0.481804 0.7575856 4040cd34-c49e-587b-e546-e1342bf1dd85
0.9351307 0.6030223 e8327955-bd9a-246a-0b17-fbf8f05fd28a
'))
>>> tab[0:8:2]
pykx.Table(pykx.q('
x x1 x2
--------------------------------------------------------
0.1872634 0.4176994 c9555cdf-57db-28a8-bf6c-67f6ee711a5f
0.7250709 0.8761714 6417d4b3-3fc6-e35a-1c34-8c5c3327b1e8
0.9351307 0.6030223 e8327955-bd9a-246a-0b17-fbf8f05fd28a
0.9452199 0.2329662 008bded0-3383-f19b-1d18-abfb199b1ac1
'))