Skip to content

Quickstart

This quickstart guide provides first time users with instructions for installing this library and make use of the functionality it contains for the first time.

Prerequisites

To complete the quickstart guide below you will need to have completed the following:

How to import PyKX

To access PyKX and it's functionality import it within your Python code using the following syntax

import pykx as kx

The use of the shortened name kx is intended to provide a terse convention for interacting with methods and objects from this library.

How to generate PyKX objects

The generation of PyKX objects is supported pricipally in two ways

  1. Execution of q code to create these entities
  2. Conversion of Python objects to analagous PyKX objects

Creation of PyKX objects using inbuilt PyKX functions

Generation of PyKX objects using pykx helper functions

>>> kx.random.random([3, 4], 10.0)
pykx.List(pykx.q('
4.976492 4.087545 4.49731   0.1392076
7.148779 1.946509 0.9059026 6.203014 
9.326316 2.747066 0.5752516 2.560658 
'))

>>> kx.Table(data = {'x': kx.random.random(10, 10.0), 'x1': kx.random.random(10, ['a', 'b', 'c'])})
pykx.Table(pykx.q('
x         x1
------------
0.8123546 a 
9.367503  a 
2.782122  c 
2.392341  a 
1.508133  b 
'))

Creation of PyKX objects from Python data types

Generation of PyKX objects from Python, Numpy, Pandas and PyArrow objects can be completed as follows using the kx.toq method.

>>> pylist = [10, 20, 30]
>>> qlist = kx.toq(pylist)
>>> qlist
pykx.LongVector(pykx.q('10 20 30'))

>>> nplist = np.arange(0, 10, 2)
>>> qlist = kx.toq(nplist)
>>> qlist
pykx.LongVector(pykx.q('0 2 4 6 8'))

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df
   col1  col2
0     1     3
1     2     4
>>> qtable = kx.toq(df)
pykx.Table(pykx.q('
col1 col2
---------
1    3   
2    4   
'))

>>> patab = pa.Table.from_pandas(df)
>>> patab
pyarrow.Table
col1: int64
col2: int64
>>> qtable = kx.toq(patab)
>>> qtable
pykx.Table(pykx.q('
col1 col2
---------
1    3   
2    4   
'))

Creation of PyKX objects using q

Generation of PyKX objects using q can be completed through calling kx.q

>>> kx.q('10 20 30')
pykx.LongVector(pykx.q('10 20 30'))

>>> kx.q('([]5?1f;5?`4;5?0Ng)')
pykx.Table(pykx.q('
x         x1   x2
---------------------------------------------------
0.439081  ncej 8c6b8b64-6815-6084-0a3e-178401251b68
0.5759051 jogn 5ae7962d-49f2-404d-5aec-f7c8abbae288
0.5919004 ciha 5a580fb6-656b-5e69-d445-417ebfe71994
0.8481567 hkpb ddb87915-b672-2c32-a6cf-296061671e9d
0.389056  aeaj 580d8c87-e557-0db1-3a19-cb3a44d623b1
'))

Interacting with PyKX Objects

PyKX objects can be interacted with in a variety of ways, through indexing using Pythonic syntax, passing PyKX objects to q/numpy functions, querying via SQL/qSQL syntax or through the use of q functionality via the context interface. Each of these is described in more depth throughout this documentation but examples of each are provided here

  • Create a PyKX list and interact with the list using indexing and slices.

    >>> qarray = kx.random.random(10, 1.0)
    >>> qarray
    pykx.FloatVector(pykx.q('0.391543 0.08123546 0.9367503 0.2782122 0.2392341 0.1508133 0.1567317 0.9785 ..'))
    >>> qarray[1]
    pykx.FloatAtom(pykx.q('0.08123546'))
    >>> qarray[1:4]
    pykx.FloatVector(pykx.q('0.08123546 0.9367503 0.2782122'))
  • Assign objects to PyKX lists

    >>> qarray = kx.random.random(3, 10.0, seed=10)
    pykx.FloatVector(pykx.q('0.891041 8.345194 3.621949'))
    >>> qarray[1] = 0.1
    >>> qarray
    pykx.FloatVector(pykx.q('0.891041 0.1 3.621949'))
  • Create a PyKX table and manipulate using Pythonic syntax

    >>> N = 100
    >>> qtable = kx.Table(
        data={
            'x': kx.random.random(N, 1.0),
            'x1': 5 * kx.random.random(N, 1.0),
            'x2': kx.random.random(N, ['a', 'b', 'c'])
        }
    )
    >>> qtable
    pykx.Table(pykx.q('
    x         x1         x2
    -----------------------
    0.3550381 1.185644   c 
    0.3615143 2.835405   a 
    0.9089531 2.134588   b 
    0.2062569 3.852387   a 
    0.481821  0.07970141 a 
    0.2065625 1.786519   a 
    0.5229178 0.1273692  c 
    0.3338806 3.440445   c 
    0.414621  3.188777   c 
    0.9725813 0.1922818  b 
    0.5422726 4.486179   b 
    0.6116582 3.967756   a 
    0.3414991 1.018642   b 
    0.9516746 3.878809   c 
    0.1169475 0.3469163  c 
    0.8158957 2.050957   a 
    0.6091539 1.168774   a 
    0.9830794 3.562923   b 
    0.7543122 0.6961287  a 
    0.3813679 1.350938   b 
    ..
    '))
    >>> qtable[['x', 'x1']]
    pykx.List(pykx.q('
    0.3550381 0.3615143 0.9089531 0.2062569 0.481821   0.2065625 0.5229178 0.3338..
    1.185644  2.835405  2.134588  3.852387  0.07970141 1.786519  0.1273692 3.4404..
    '))
    >>> qtable[0:5]
    pykx.Table(pykx.q('
    x         x1         x2
    -----------------------
    0.3550381 1.185644   c 
    0.3615143 2.835405   a 
    0.9089531 2.134588   b 
    0.2062569 3.852387   a 
    0.481821  0.07970141 a 
    '))
  • Pass a PyKX object to q function

    >>> qfunction = kx.q('{x+til 10}')
    >>> qfunction(kx.toq([random() for _ in range(10)], kx.FloatVector))
    pykx.FloatVector(pykx.q('0.3992327 1.726329 2.488636 3.653597 4.028107 5.444905 6.542917 7.00628 8.152..'))
  • Apply a Python function on a PyKX Vector

    >>> qvec = kx.random.random(10, 10, seed=42)
    >>> qvec
    pykx.LongVector(pykx.q('4 7 2 2 9 4 2 0 8 0'))
    >>> qvec.apply(lambda x:x+1)
    pykx.LongVector(pykx.q('5 8 3 3 10 5 3 1 9 1'))
  • Pass a PyKX array objects to a Numpy functions

    >>> qarray1 = kx.random.random(10, 1.0)
    >>> qarray1
    pykx.FloatVector(pykx.q('0.7880561 0.9677446 0.9325539 0.6501981 0.4837422 0.5338642 0.5156039 0.31358..'))
    >>> qarray2 = kx.random.random(10, 1.0)
    >>> qarray2
    pykx.FloatVector(pykx.q('0.04164985 0.6417901 0.1608836 0.691249 0.4832847 0.6339534 0.4614883 0.06373..'))
    
    >>> np.max(qarray1)
    0.9677445779088885
    >>> np.sum(kx.random.random(10, 10))
    43
    >>> np.add(qarray1, qarray2)
    pykx.FloatVector(pykx.q('0.8297059 1.609535 1.093438 1.341447 0.9670269 1.167818 0.9770923 0.3773123 1..'))
  • Query using SQL/qSQL

    >>> N = 100
    >>> qtable = kx.Table(
        data={
            'x': kx.random.random(N, ['a', 'b', 'c'],
            'x1': kx.random.random(N, 1.0),
            'x2': 5 * kx.random.random(N, 1.0),
        }
    )
    >>> qtable[0:5]
    pykx.Table(pykx.q('
    x x1        x2        
    ----------------------
    a 0.8236115 0.7306473 
    a 0.3865843 1.01605   
    c 0.9931491 1.155324  
    c 0.9362009 1.569154  
    c 0.4849499 0.09870703
    '))
    >>> kx.q.sql("SELECT * FROM $1 WHERE x='a'", qtable)
    pykx.Table(pykx.q('
    x x1        x2       
    ---------------------
    a 0.8236115 0.7306473
    a 0.3865843 1.01605  
    a 0.259265  2.805719 
    a 0.6140826 1.730398 
    a 0.6212161 3.97236  
    ..
    '))
    >>> kx.q.qsql.select(qtable, where = 'x=`a')
    pykx.Table(pykx.q('
    x x1        x2
    ---------------------
    a 0.8236115 0.7306473
    a 0.3865843 1.01605
    a 0.259265  2.805719
    a 0.6140826 1.730398
    a 0.6212161 3.97236
    ..
    '))
  • Applying q keyword functions

    >>> qvec = kx.q.til(10)
    >>> qvec
    pykx.LongVector(pykx.q('0 1 2 3 4 5 6 7 8 9'))
    >>> kx.q.mavg(3, qvec)
    pykx.FloatVector(pykx.q('0 0.5 1 2 3 4 5 6 7 8'))

Converting PyKX objects to common Python types

Objects generated via the PyKX library can be converted where reasonable to Python, Numpy, Pandas and PyArrow types which are analogous to their underlying q representation. For example q tables are converted to Pandas Dataframes and PyArrow tables respectively. This is facilitated in each case through the use of the py, np, pd and pa methods.

  • Convert PyKX objects to Python

    >>> qdictionary = kx.toq({'a': 5, 'b': range(10), 'c': np.random.uniform(low=0.0, high=1.0, size=(5,))})
    >>> qdictionary
    pykx.Dictionary(pykx.q('
    a| 5
    b| 0 1 2 3 4 5 6 7 8 9
    c| 0.01450907 0.9131434 0.5745007 0.961908 0.7609489
    '))
    >>> qdictionary.py()
    {'a': 5, 'b': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'c': [0.014509072760120034, 0.9131434387527406, 0.5745006683282554, 0.9619080068077892, 0.7609488749876618]}
    >>>
    >>> qvec = kx.toq(np.random.randint(5, size=10))
    >>> qvec.py()
    [0, 2, 4, 1, 2, 1, 0, 1, 0, 1]
  • Convert PyKX objects to Numpy

    >>> import numpy as np
    >>> random = np.random.random
    >>> randint = np.random.randint
    >>> qvec = kx.q('10?5')
    >>> qvec.np()
    array([0, 2, 4, 1, 2, 1, 0, 1, 0, 1])
    >>> qtab = kx.Table([[random(), randint(0, 5)] for _ in range(5)])
    >>> qtab
    pykx.Table(pykx.q('
    x         x1
    ------------
    0.8247812 4 
    0.2149847 0 
    0.1007832 2 
    0.4520411 4 
    0.0196153 0 
    '))
    >>> qtab.np()
    rec.array([(0.82478116, 4), (0.21498466, 0), (0.10078323, 2),
               (0.45204113, 4), (0.0196153 , 0)],
              dtype=[('x', '<f8'), ('x1', '<i8')])
  • Convert PyKX objects to Pandas

    >>> qvec = kx.toq(np.random.randint(5, size=10))
    >>> qvec.pd()
    0    0
    1    2
    2    4
    3    1
    4    2
    5    1
    6    0
    7    1
    8    0
    9    1
    dtype: int64
    >>> df = pd.DataFrame(data={'x': [random() for _ in range(5)], 'x1': [randint(0, 4) for _ in range(5)]})
    >>> qtab = kx.toq(df)
    >>> qtab.pd()
              x  x1
    0  0.824781   4
    1  0.214985   0
    2  0.100783   2
    3  0.452041   4
    4  0.019615   0
  • Convert PyKX objects to PyArrow

    >>> qvec = kx.random.random(10, 5)
    >>> qvec.pa()
    <pyarrow.lib.Int64Array object at 0x7ffa678f4e80>
    [
      0,
      2,
      4,
      1,
      2,
      1,
      0,
      1,
      0,
      1
    ]
    >>> df = pd.DataFrame(data={'x': [random() for _ in range(5)], 'x1': [randint(0, 4) for _ in range(5)]})
    >>> qtab = kx.toq(df)
    >>> qtab.pa()
    pyarrow.Table
    x: double
    x1: int64
    ----
    x: [[0.707331785506831,0.03695847895120696,0.7024166621644556,0.3955776423810857,0.7539328513313873]]
    x1: [[4,3,2,3,2]]

Next steps