How to perform a Non-Transformed TSS search
This page details how to execute a Non-Transformed Temporal Similarity Search (Non-Transformed TSS) search in KDB.AI.
Tip: For the best experience, we recommend reading about KDB.AI Non-Transformed TSS first.
Before we dive in, go to the Understanding Non-Transformed TSS search page to learn about this method.
To use the Non-Transformed TSS search, you don't need to extract vectors from the time series. The algorithm performs the following actions:
- Takes simple time series (numerical sequence stored in a kdb+ column) as input.
- Scans the time series with a sliding window (of same size as the query vector; size can change between two queries).
- Computes the list of distances between the query vector and each occurrence of the sliding window.
- Returns the k-nearest neighbors.
Setup
Before you start, make sure you have:
- An active KDB.AI Cloud or Server license
- Installed the latest version of KDB.AI Cloud or Server
- A valid API key if you're using KDB.AI Cloud
- Python Client
To store and search temporal data using the Non-Transformed TSS method, follow these steps:
1. Import dependencies
Start by importing the following dependencies:
import sys
import kdbai_client as kdbai
from pprint import pprint # for pretty printing
import pandas as pd
import numpy as np
2. Create schema
Open a KDB.AI session to create a schema:
session = kdbai.Session()
session.database('default').tables # check what tables are already created
schema = [
{"name": "realTime", "type": "datetime64[ns]"},
{"name": "sym", "type": "str"},
{"name": "price", "type": "float64"},
{"name": "size", "type": "int32"},
]
table = session.database('default').create_table('trade', schema)
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables \
--header 'Content-Type: application/json' \
--data '{
"table":"trade",
"schema": [
{
"name": "realTime",
"type": "timestamp"
},
{
"name": "sym",
"type": "symbol"
},
{
"name": "price",
"type": "float"
},
{
"name": "size",
"type": "int"
}
]
}' | jq .
`gw set hopen 8082;
dims:10;
mySchema:flip `name`type!(`realTime`sym`price`size;`p`s`f`j);
// create
p:`database`table`schema!(`default;`trade;mySchema);
gw(`createTable;p);
or alternatively, if you have an existing kdb+ table on disk and would like to create from it, run below:-
trade = db.create_table(table="trade",external_data_references=[{"path":b'/db', "provider" :"kx"}])
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables \
--header 'Content-Type: application/json' \
--data '{
"table":"trade",
"externalDataReferences": [{
"path": "/db",
"provider": "kx"
}]
}' | jq .
`gw set hopen 8082;
ref:enlist `path`provider!("/db";`kx);
p:`database`table`externalDataReferences!(`default;`trade;ref);
gw(`createTable;p);
3. Insert data
Create the data df
that contains the time series column price
:
numRows = 40
df = pd.DataFrame()
df['realTime'] = sorted(np.random.randint(sys.maxsize, size=numRows).astype('datetime64[ns]'))
df['sym'] = np.random.choice(['aaa', 'bbb'], size=numRows).astype('str')
df['price'] = [x.astype('float64') for x in np.random.rand(numRows)]
df['size'] = np.random.randint(100, size=numRows).astype('int32')
N:100;
t:([] realTime:asc N?0p;sym:N?`3; price:N?1f; size:til N);
Insert df
into the table:
table.insert(df)
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/insert \
--header 'Content-Type: application/json' \
--data '{
"payload": [
{
"realTime": "2001.01.01D00:48:57.051633652",
"sym": "aaa",
"price": 1.1,
"size": 42
},
{
"realTime": "2002.01.01D00:48:57.051633652",
"sym": "bbb",
"price": 2.2,
"size": 36
},
{
"realTime": "2003.01.01D00:48:57.051633652",
"sym": "ccc",
"price": 3.4,
"size": 24
},
{
"realTime": "2004.01.01D00:48:57.051633652",
"sym": "ddd",
"price": 4.7,
"size": 11
}
]
}' | jq .
r:gw(`insertData;`database`table`payload!(`default;`trade;t));
Run a query to check the contents of the table:
table.query()
curl -s -X POST localhost:8082/api/v2/databases/default/tables/trade/query | jq .
(gw(`query;`database`table!(`default;`trade)))[`result];
4. Perform searches
Now you can conduct a similarity search (searching along either the dense column) as below:
# single query search
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=3, type="tss")[0]
# multiple queries search
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4],[7,1,2,3,4,7,1,2,3,4]]}, n=3, type="tss")
# single query search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": 1,
"type": "tss"
}' | jq .
# multiple queries search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.3,2.3,3.3], [1.4,2.4,3.4]]},
"n": 1,
"type": "tss"
}' | jq .
tqry1:enlist[`price]!enlist enlist 1.1 1.2 1.3; // single query search
tqry2:enlist[`price]!enlist (1.1 1.2 1.3;2.1 2.2 2.3); // multiple queries search
gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry1;10;`tss));
gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry2;10;`tss));
If it is a partitioned table and you would like to force search even thought the query is longer than the number of rows in some partitions, add force
to options
:-
trade.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=5, type="tss", options={'force':True})[0]
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": 1,
"type": "tss",
"options":{"force" : true}
}' | jq .
first (gw(`search;`database`table`vectors`n`type`options!(`default;`trade;tqry1;3;`tss;(enlist `force)!(enlist 1b))))[`result];
You can also perform an outlier search along the dense column using a negative n
:
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=3, type="tss")[0] # similarity search
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=-3, type="tss")[0] # outlier search
# similarity search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": 1,
"type": "tss"
}' | jq .
# outlier search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": -1,
"type": "tss"
}' | jq .
tqry1:enlist[`price]!enlist enlist 1.1 1.2 1.3;
gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry1;3;`tss)); // similarity search
gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry2;-3;`tss)); // outlier search
Summary
By putting the above snippets of create/insert/search together, we obtain the below example snippet for the Non-transformed TSS method. If you're already familiar with the basic usage of KDB.AI, we attached a snippet with a Non-transformed TSS case so you can compare the two. Feel free to switch between the two tabs to spot the differences.
Example: Non-Transformed TSS search
import sys
import kdbai_client as kdbai
from pprint import pprint # for pretty printing
import pandas as pd
import numpy as np
session = kdbai.Session()
session.database('default').tables # check what tables are already created
schema = [
{"name": "realTime", "type": "datetime64[ns]"},
{"name": "sym", "type": "str"},
{"name": "price", "type": "float64"},
{"name": "size", "type": "int32"},
]
table = session.database('default').create_table('trade', schema)
numRows = 40
df = pd.DataFrame()
df['realTime'] = sorted(np.random.randint(sys.maxsize, size=numRows).astype('datetime64[ns]'))
df['sym'] = np.random.choice(['aaa', 'bbb'], size=numRows).astype('str')
df['price'] = [x.astype('float64') for x in np.random.rand(numRows)]
df['size'] = np.random.randint(100, size=numRows).astype('int32')
table.insert(df)
table.query()
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=5, type="tss")[0]
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4],[7,1,2,3,4,7,1,2,3,4]]}, n=5, type="tss")
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=3, type="tss")[0] # similarity search
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=-3, type="tss")[0] # outlier search
table.search(vectors={'price': [[0,1,2,3,4,0,1,2,3,4]]}, n=3, type="tss", options={"returnMatches":True})[0] # return original values
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables \
--header 'Content-Type: application/json' \
--data '{
"table":"trade",
"schema": [
{
"name": "realTime",
"type": "timestamp"
},
{
"name": "sym",
"type": "symbol"
},
{
"name": "price",
"type": "float"
},
{
"name": "size",
"type": "int"
}
]
}' | jq .
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/insert \
--header 'Content-Type: application/json' \
--data '{
"payload": [
{
"realTime": "2001.01.01D00:48:57.051633652",
"sym": "aaa",
"price": 1.1,
"size": 42
},
{
"realTime": "2002.01.01D00:48:57.051633652",
"sym": "bbb",
"price": 2.2,
"size": 36
},
{
"realTime": "2003.01.01D00:48:57.051633652",
"sym": "ccc",
"price": 3.4,
"size": 24
},
{
"realTime": "2004.01.01D00:48:57.051633652",
"sym": "ddd",
"price": 4.7,
"size": 11
}
]
}' | jq .
curl -s -X POST localhost:8082/api/v2/databases/default/tables/trade/query | jq .
# single query search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": 1,
"type": "tss"
}' | jq .
# multiple queries search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.3,2.3,3.3], [1.4,2.4,3.4]]},
"n": 1,
"type": "tss"
}' | jq .
# outlier search
curl -s -X POST http://localhost:8082/api/v2/databases/default/tables/trade/search \
--header 'Content-Type: application/json' \
--data '{
"vectors":{"price" : [[1.2,2.2,3.2]]},
"n": -1,
"type": "tss"
}' | jq .
`gw set hopen 8082;
dims:10;
mySchema:flip `name`type!(`realTime`sym`price`size;`p`s`f`j);
// create
p:`database`table`schema!(`default;`trade;mySchema);
gw(`createTable;p);
// insert
N:100;
t:([] realTime:asc N?0p;sym:N?`3; price:N?1f; size:til N);
r:gw(`insertData;`database`table`payload!(`default;`trade;t));
(gw(`query;`database`table!(`default;`trade)))[`result];
// search
tqry1:enlist[`price]!enlist enlist 1.1 1.2 1.3; // single query search
tqry2:enlist[`price]!enlist (1.1 1.2 1.3;2.1 2.2 2.3); // multiple queries search
first (gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry1;10;`tss)))[`result];
(gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry2;10;`tss)))[`result];
first (gw(`search;`database`table`vectors`n`type!(`default;`trade;tqry1;-10;`tss)))[`result]; // outlier search
first (gw(`search;`database`table`vectors`n`type`options!(`default;`trade;tqry1;10;`tss;enlist[`returnMatches]!enlist 1b)))[`result]; // return original pattern
As you can see in the above comparison, the main grammatical differences between running the Non-Transformed TSS search vs. other cases are:
Non-Transformed TSS | Transformed TSS or Non-TSS | |
---|---|---|
type |
tss |
flat , hnsw etc. |
dims |
Not required | Required |
Entries in the search column | Scalars | Vectors |
pytype of the search column |
float64 |
float32 |
Outlier search | Available | N/A |
Next steps
Now that you're familiar with a Non-Transformed TSS search, try the following:
- Explore best practices and use cases on the KDB.AI Learning hub.
- Discover our GitHub repo, open the sample or run the notebook directly in Google Colab.
- Run the pattern matching notebook in Google Colab.
- Download the pattern matching Jupyter notebook and accompanying files from GitHub.
- Watch this YouTube video about Temporal Similarity Search for vector databases.