
kx
Technical Whitepaper

Kdb+ and WebSockets

Date May 2018

Authors Version 1.0 Chris Scott worked for First Derivatives from
2013 as a kdb+ consultant at one of the world’s largest
financial institutions, developing a range of kdb+
applications which use WebSockets as a form of
communication.

Version 1.1 (March 2018) Michael Gracey also joined First
Derivatives in 2013 and works as a front-end developer
for one of the world’s largest financial institutions
developing a performant Web interface for visualising
real-time data via the use of WebSocket connections.
Michael is also involved in designing HTML5 training
courses and building HTML5 mobile and desktop
applications for the Kx platform.

Contents

What are WebSockets? ... 5
Connecting to kdb+ using WebSockets ... 7
Converting kdb+ to JSON ... 12
Viewing traffic over a WebSocket connection ... 17
WebSocket security .. 18
A simple example – real-time data ... 20
Conclusion .. 23
Appendices .. 24

2

Kdb+ and WebSockets kx

Kdb+ and WebSockets

Since the release of kdb+ 3.0, it has been possible to make use of WebSockets1 when
connecting to a kdb+ process. This has significant implications for how we can build
front-end applications that use a kdb+ back-end, in particular for applications wanting
to display real-time information.

WebSockets are supported by most modern browsers and thus make it possible to
hook a web application up directly to a kdb+ process to allow real-time communication
over a persistent connection. This gives us the ability to build a pure HTML5 real-time
web application which can connect to kdb+ through JavaScript, which is native to
web browsers.

Using web applications to build GUIs for kdb+ applications is becoming increasingly
popular. Only a web browser is required to run the GUI, so it is OS independent. This
means that when developing the GUI, only one codebase is required for all platforms
and maintenance and upgrades are much easier and efficient to perform.

This paper introduces what WebSockets are and what benefits they hold over standard
HTTP. It takes the reader through the set-up of a simple web page that uses WebSockets
to connect to a kdb+ process, the steps involved in passing data through the connection,
and the various methods for converting data between kdb+ and JavaScript.

An earlier version of this paper was published in October 2014. Kdb+ has been
enhanced since then to support the growing popularity of WebSockets and JSON. As
part of this revision, the paper now also documents new message handlers for opening
and closing WebSocket connections in section 3.3, and debugging techniques that can
be used to view traffic over these connections in section 5.

The paper finishes with a full working example (including code) of a simple Web
application which uses kdb+ to provide real-time updating of tables based on user
queries.

1. https://en.wikipedia.org/wiki/WebSocket

3

Kdb+ and WebSockets kx

https://en.wikipedia.org/wiki/WebSocket

HTML, CSS and JavaScript

As well as q, this paper makes significant use of HTML, CSS and JavaScript. A basic
understanding of these will be necessary to take full advantage of this paper, though any
complex structures will be examined here in detail. For a crash course on the above languages,
please refer to the following resources:

• w3schools.com2

• codecademy.com3

2. http://www.w3schools.com/

3. http://www.codecademy.com/

4

Kdb+ and WebSockets kx

http://www.w3schools.com/
http://www.codecademy.com/

What are WebSockets?

WebSockets were a long-awaited evolution in client and web server communication
technology. They provide a protocol between a client and server which runs over a
persistent TCP connection. The client-server connection can be kept open as long as
needed and can be closed by either the client or the server. This open connection
allows bi-directional, full-duplex messages to be sent over the single TCP socket
connection – the connection allows data transfer in both directions, and both client
and server can send messages simultaneously. All messages sent across a WebSocket
connection are asynchronous.

Without WebSockets, bi-directional messaging can be forced by having distinct HTTP
calls for both the client sending requests and the server publishing the responses and
updates. This requires either the client to keep a mapping between outgoing and
incoming messages, or the use of a proxy server in between the client and server
(known as HTTP tunneling). WebSockets simplify this communication by providing
a single connection which both client and server can send messages across.

WebSockets were designed to be implemented in web browsers and web servers, but
they can be used by any client or server application. The ability for bi-directional
real-time functionality means it provides a basis for creating real-time applications
on both web and mobile platforms. The WebSocket API and Protocol have both been
standardized by W3C and the IEFT respectively.

Why not just use .z.ph?
It has previously been possible to connect to a kdb+ process using HTTP. HTTP
requests could be processed using the .z.ph and .z.pp handlers. To illustrate this,
simply start up a q process with an open port and then type the hostname:port into
your web browser. This will give a very basic view of the q process.

Straight out of the box, this is very simple and provides a useful interface for viewing
data and running basic queries without being limited to the character limits of a q
console. If, however, you want to do more than just simple analysis on the q process,
this method presents a few drawbacks:

1. Customization is quite a complicated process that requires you to manipulate the
functions in the .h namespace which form the basis of the in-built HTTP server
code. The HTML markup is generated entirely by the q process.

2. Data must be requested by the browser, so some form of polling must occur in
order to update the webpage. This makes the viewing of real-time data impossible
without the continuous polling of the kdb+ server.

5

Kdb+ and WebSockets kx

3. .z.ph uses synchronous messaging, and the webpage is effectively refreshed every
time a query is sent.

Instead of relying on .z.ph to serve the entire web page, an application could make
use of AJAX techniques to send asynchronous GET and POST requests to a kdb+
server. .z.ph and .z.pp can be modified to handle these requests. AJAX (Asynchronous
JavaScript And XML) is a descriptive name that covers a range of web development
techniques that can be used to provide asynchronous messaging between a web
application and server.

This allows requests to be made by the client in the background without having to
reload the web page, and as there is no reliance on .z.ph to generate the HTML
markup, the application can be fully customized independently of the kdb+ process.
In order to receive updates, the application will still have to poll the server, which is
not ideal for real-time data. The full implementation of this method is beyond the
scope of this whitepaper.

As WebSocket connections are persistent, the server is able to push updates to the
client rather than relying on the client to poll for the information. Additionally, while
each HTTP request and response must include a TCP header, WebSockets only require
this header to be sent during the initial handshake.

6

Kdb+ and WebSockets kx

Connecting to kdb+ using WebSockets

The handshake
In order to initialise a WebSocket connection, a WebSocket ‘handshake’ must be
successfully made between the client and server processes. First, the client sends a
HTTP request to the server to upgrade from the HTTP protocol to the WebSocket
protocol:

// Client WebSocket request header</p>
GET /text HTTP/1.1
Host: localhost:5001
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: xc0DPEL132mlMtGdbWJPGQ==
Sec-WebSocket-Version: 13

The server then sends a HTTP response indicating that the protocol upgrade was
successful:

// Server WebSocket response header
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: 1thgMROs9ylOWOMkc2WUWGRzWdY=

The above handshake request and response details can be found within a browser’s
dev tools. Google Chrome’s developer tools can be opened with the F12 key and any
information on a pages network operations can found within its Network tab. Here
you can click on WS to filter out just the WebSocket connections and then select a
specific WebSocket connection to see a headers section detailing its request and
response headers and perhaps, more importantly, see a Frames section which can be
used to monitor traffic sent over the connection in real time. We will revisit the Frames
section later.

7

Kdb+ and WebSockets kx

The Network tab in Chrome Developer Tools

.z.ws message handler
Like the .z.ph HTTP GET handler, kdb+ has a separate message handler for
WebSockets called .z.ws, meaning all incoming WebSocket messages will be processed
by this function. There is no default definition of .z.ws; it should be customized by
the developer to handle the incoming messages as required. Later, several examples
of a customized .z.ws handler will be shown, but initially, we will look at a very basic
definition:

q).z.ws:{neg[.z.w].Q.s value x;}

For now, let’s assume that x (the query from the client) is being passed in as a string.
value x simply evaluates the query, and passing this into .Q.s will present the result
in console output format (i.e. plain text).

As mentioned before, all messages passed through a WebSocket connection are
asynchronous. This means that we must handle the server response within the .z.ws
message handler. neg[.z.w] does this by asynchronously pushing the results back to
the handle which raised the request.

From the server side, using neg[.z.w] within the handler will push the result back
to the client once it has been evaluated. The client does not wait for a response and
instead the open WebSocket connection will receive the response some time later, so
we must handle this on the client side as well.

8

Kdb+ and WebSockets kx

Fortunately, JavaScript has a native WebSocket API which allows us to handle this
relatively easily. The main parts of the JavaScript API are explained below.

<script type="text/javascript">
function connect(){

if ("WebSocket" in window){ // check if WebSockets supported
// open a WebSocket
var ws = new WebSocket("ws://host:port");
ws.onopen = function(){

// called upon successful WebSocket connection
};
ws.onmessage = function(msg){

// called when the client receives a message
};
ws.onclose = function(){

// called when WebSocket is closed
};

}
else {

// the browser doesn't support WebSockets
}

}
ws.send(msg) // function to handle sending a message

</script>

.z.wo and .z.wc message handlers
The .z.wo and .z.wc message handlers were introduced in kdb+ version 3.3
(2014.11.26) to be evaluated whenever a WebSocket connection is opened (.z.wo) or
closed (.z.wc). Prior to this version, .z.pc and .z.po provide an alternative solution
however, these handle the opening and closing of all connections over a port and don’t
distinguish WebSocket connections.

The .z.wo handler, much like its .z.po counterpart, is called when the connection
is initialized and after it has been validated against any -u/-U and/or .z.pw checks in
place. Neither .z.wo nor .z.wc has a default definition, so they should be customized
by the developer accordingly. Typical usage of these handlers is to maintain information
on active WebSocket connections as demonstrated below:

q)\p 5001
q)activeWSConnections: ([] handle:(); connectTime:())

//x argument supplied to .z.wc & .z.wo is the connection handle
q).z.wo:{`activeWSConnections upsert (x;.z.t)}
q).z.wc:{ delete from `activeWSConnections where handle =x}

//websocket connects
q)activeWSConnections
handle connectTime

9

Kdb+ and WebSockets kx

548 13:15:24.737

//websocket disconnects
q)activeWSConnections
handle connectTime

Simple example
Here is an example of a simple client application connecting to a kdb+ server using
a WebSocket. This is a slightly modified version of the example in the Cookbook
WebSocket article4.

First, start up a kdb+ server and set our .z.ws handler. Here we will also add some
error trapping to the handler to send any error message to the client.

q)\p 5001
q).z.ws:{neg[.z.w].Q.s @[value;x;{`$ "'",x}]}

Next, we create an HTML document that we will use to connect to our kdb+ server.
The code for creating this is given in Appendix A and should be copied into a text
editor and saved as an HTML file, which can then be read in any modern web browser.

In our HTML code, we define the elements that will capture input and display output,
apply some basic stylings to those elements and supply the JavaScript that will send
our input to the server and handle the response it gets back. This web application will
function like a q console in that we can write some q commands in its input box, send
that input as a string to the server by clicking a button and then see the returned result
produced by the server evaluating those input commands.

4. http://code.kx.com/q/cookbook/websockets

10

Kdb+ and WebSockets kx

http://code.kx.com/q/cookbook/websockets

A web console application which allows q commands to be executed from the browser

Pushing data to the client using neg[h]
Above, we have used neg[.z.w] within the .z.ws handler to return the result to the
client immediately after it is received and evaluated. But in some situations, we don’t
want to just provide a response, but rather set up a subscription that continually pushes
data through our WebSocket connection.

As the WebSocket is persistent and obeys normal IPC protocol, we can push data
through it asynchronously at any time using neg[h], where h is the WebSocket handle.
To see this, in the input box of the example application above, type the following code
and click Go.

q).z.ts:{[x;y]neg[x].Q.s .z.T}[.z.w]; system"t 1000"

You should now see the current time being output every second, without the browser
having to poll for the data.

11

Kdb+ and WebSockets kx

Converting kdb+ to JSON

Converting kdb+ into string format using .Q.s means that not only is the message
limited by the console size, but also that, as the client is receiving plain text, the data
will be unstructured and very difficult to parse into something that can be manipulated
by the client.

JavaScript has a built-in technology called JSON (JavaScript Object Notation) which
can be used to create JavaScript objects in memory to store data. These objects are
collections of name/value pairs which can be easily accessed by JavaScript and used
to build the data structures displayed on the web page.

We want to make use of JSON to hold our data so that we can easily display and
manipulate our data on the client. There is a very important relationship between
kdb+ and JSON – kdb+ dictionaries and JSON objects are comparable. This means
that we can parse our kdb+ data into JSON structures very easily, with tables just
becoming arrays of JSON objects.

Depending on the application, it may be of benefit to do this conversion on the server
side within the q process, or on the client-side in the JavaScript code. We will explore
the two options along with an example to show both in action.

Using .j functions within a q process (server-side parsing)
Kdb+ 3.3 introduced native functions for translating between kdb+ and JSON format.
This resulted in a 50-100× speedup compared to previous functionality, and the new
versions can also process Unicode.

There are two main functions that we will make use of:

• .j.j parses kdb+ into a JSON string

• .j.k parses a JSON string into kdb+

q)tab:([]col1:`a`b`c`d;col2:1 2 3 4)
q)tab
col1 col2

a 1
b 2
c 3
d 4
q).j.j tab
"[{\"col1\":\"a\",\"col2\":1},{\"col1\":\"b\",\"col2\":2},{\"col1\":\"c\",\"c..
q).j.k "{\"a\":1,\"b\":2,\"c\":3,\"d\":4}"

12

Kdb+ and WebSockets kx

a| 1
b| 2
c| 3
d| 4

Here is an example of how we can use this to manipulate data in our web app. First
set up our server and use .j.j to convert the kdb+ output to JSON:

q)\p 5001
q).z.ws:{neg[.z.w].j.j @[value;x;{`$ "'",x}];}

‘Above’ we used the SimpleDemo.html file given in ‘Appendix A’ , which includes
some code to handle a plain-text response and append it to the screen:

/*
when a message is received, prepend the message to the display area
along with the input command

*/
ws.onmessage=function(e){

/*
the message is in plain text, so we need to convert ' ' to ' '
and '\n' to '
' in order to display spaces and newlines correctly
within the HTML markup

*/
var formattedResponse = e.data.replace(/ /g, ' ').replace(/\n/g, '
');
output.innerHTML = cmd + formattedResponse + output.innerHTML;
cmd="";

}

We can now rewrite the ws.onmessage JavaScript function from this example to handle
the messages coming through as JSON strings rather than just plain text.

ws.onmessage=function(e){
/*parse the JSON string into a JSON object using JSON.parse */
var outputHTML,data = JSON.parse(e.data);
if (typeof data == "object") {

/* if an object, then message must be a table or a dictionary */
if (data.length) {

/*if object has a length then it is a table*/
outputHTML = generateTableHTML(data);

} else {
/*

if object has no length, it is a dictionary,
in this case we will iterate over the keys to print
the key|value pairs as would be displayed in a q console

*/
for (var x in data)

outputHTML += x + " | " + data[x] + "
";
}

} else {
/* if not an object, then message must have simple data structure*/
outputHTML = data;

};

13

Kdb+ and WebSockets kx

output.innerHTML = cmd + outputHTML + "
" + output.innerHTML;
}

Whenever we handle a table in this example you will notice we call a function named
generateHTML. This is a simple function we wrote to loop over each object in the array
of objects that we now know represents a table and wrap each inner value in HTML
table markup. This is in a separate function because we will reuse this functionality
later and having it in a separate function makes it easier to copy and reuse in other
applications.

function generateTableHTML(data){
/* we will iterate through the object wrapping it in the HTML table tags */
var tableHTML = '<table border="1"><tr>';
for (var x in data[0]) {

/* loop through the keys to create the table headers */
tableHTML += '<th>' + x + '</th>';

}
tableHTML += '</tr>';
for (var i = 0 i < data.length; i++) {

/* loop through the rows, putting tags around each col value */
tableHTML += '<tr>';
for (var x in data[0]) {

tableHTML += '<td>' + data[i][x] + '</td>';
}
tableHTML += '</tr>';

}
tableHTML += '</table>';
return tableHTML;

}

With our improvements in place, you can see that it gives the same web console
application as before. The distinction, however, is that we are now handling JSON
objects which are easier to manipulate than strings of plain text. The JavaScript code
will now be aware of data type information which is not the case with plain strings
and could use that information to perform more complex operations like filtering data
or populating charts.

Using the .j functions within the q process is very straightforward, and if it is suitable
for the application to transfer messages across the WebSocket as strings, this can be
a good solution. However, in some cases, it may be preferable to serialize the data into
binary format before transmitting it across the connection.

Using c.js within JavaScript (client-side parsing)
Instead of parsing the data within the kdb+ server using .j functions, we could instead
use -8! to serialize the data into kdb+ binary form and then deserialize it on the client
side directly into a JSON object. With client machines generally being a lot more
powerful than in the past, it is reasonable to provide the client-side JavaScript code
with some extra workload.

14

Kdb+ and WebSockets kx

This approach requires a little more understanding of JavaScript. However, Kx provides
the script c.js which contains the functionality to serialize and deserialize data on
the client side. The deserialize function converts kdb+ binary data into JSON, while
the serialize function will convert our message into kdb+ binary format before sending
it to the server. c.js can be found on GitHub at: KxSystems/kdb/c/c.js7

The previous section showed how we can parse q structures into JSON strings and
send them to our client. In this example, we will instead do all of the parsing on the
client side to produce the same result. The client will send strings to the server, but
the server will send serialized data back to the client. Outgoing messages are serialized
using the -8! operator:

q)\p 5001
q).z.ws:{neg[.z.w] -8! @[value;x;{`$"'",x}]}

We need to make a few adjustments to our JavaScript code in order to handle the
serialized responses. Firstly, we need to load the c.js script into our web page by
downloading the c.js file to the same directory as our HTML document, and include
the below import just before our main set of <script> tags.

<script src="c.js"></script>

When we define our WebSocket connection, we need to tell the JavaScript code to
expect the messages to be coming through in binary. For this we set ws.binaryType
to 'arraybuffer'. Place this line on the line after we have set up the new WebSocket
connection.

ws = new WebSocket("ws://localhost:5001/");
ws.binaryType = 'arraybuffer';

Next, we need to edit the ws.onmessage function. As we are deserializing the message
straight into JSON, we do not need to use the JSON.parse function. Instead, we simply
replace it with the deserialize function provided in c.js.

var outputHTML,data = deserialize(e.data);

The rest of ws.onmessage should be identical to the example in the previous section
and should work exactly as it did before. We could also decide we want to serialize
the message that we send to the server from the client using the serialize function.

ws.send(serialize(input.value));

7. https://github.com/KxSystems/kdb/blob/master/c/c.js

15

Kdb+ and WebSockets kx

https://github.com/KxSystems/kdb/blob/master/c/c.js

This would then require that we update .z.ws to deserialize the message back into a
string using -9! so that it can then be evaluated.

q).z.ws:{neg[.z.w] -8! @[value;-9!x;{`$ "'",x}]}

 Reference: IPC8 for more on serialization

8. http://code.kx.com/q/ref/ipc

16

Kdb+ and WebSockets kx

http://code.kx.com/q/ref/ipc

Viewing traffic over a WebSocket connection

When working with WebSockets sometimes we may need to view the messages that
are being sent over a WebSocket connection for debugging purposes. We can do this
by inspecting the Network tab in our browser’s developer tools. We are going to use
Google Chrome for the demonstration of this, but most modern browsers will also
implement similar network-monitoring tools.

In ‘The handshake’ , we looked at the headers associated with a WebSocket connection.
Beside the Headers section, there is a Frames tab that displays what messages have
been sent and received, the time they happened, and how many characters long those
messages were. The figure below shows us the traffic conducted while using our earlier
web console application.

The sent and received messages over a connection as displayed in Google Chrome’s Network tab

You can see above that the messages in green are query strings that we are sending
to the server and the messages in white are the JSON strings we are getting back. The
last line shows us a different response from the server. At this point, the .z.ws message
handler was modified slightly. Instead of using .j.j before sending back the data, it
was changed to serialize it using -8! instead. The binary frame that we see is simply
the serialized response we are getting back. It is important to note when sending
serialized data we cannot view the message again until it has been received and
deserialized.

17

Kdb+ and WebSockets kx

WebSocket security

Security is one of the biggest concerns in any system. It is of the utmost importance
that, especially when dealing with sensitive financial information, users only have
access to view and edit data they are allowed to see.

The methods used to protect kdb+ processes can be extended to cover WebSockets.
There is one caveat in terms of username/password authentication which we will
discuss below. A full discussion on kdb+ permissioning is beyond the scope of this
whitepaper; instead, please refer to the July 2013 whitepaper10.

Username and password
Client authentication is not defined in the WebSocket protocol, and in most cases, it
is up to the developer to implement an authentication method of their choice. This
means that being prompted for a username and password by the browser when the
WebSocket makes a request cannot be guaranteed across all browsers, Chrome and
Firefox do support this, however.

First, create our user/password file and start the server using the –u argument.

C:\Users\mgrac>type users.txt chris:password
michael:password2
C:\Users\mgrac>q -p 5001 –u users.txt
KDB+ 3.5 2017.11.30 Copyright (C) 1993-2017 Kx Systems
w32/ 4()core 4095MB mgrac desktop-u7p1jte 192.168.1.64 NONEXPIRE

q).z.ws:{neg[.z.w] -8! @[value;-9!x;{`$ "'",x}]}

If we try to connect to the process using Chrome or Firefox, they will prompt for a
username and password and, upon correct entry, successfully create the connection.
Not all browsers will currently ask for authentication details, and if so their connection
attempt will not be successful. When the connection is not successful due to
authentication, a response code of 401 (unauthorized) will be returned to the client.

Behind the scenes, Chrome/Firefox are actually sending two requests. When they
each receive the first 401 response code, they prompt for a username and password
and then send a new WebSocket request with an additional ‘Authorization’ option in
the header.

10. http://code.kx.com/q/wp/permissions_with_kdb.pdf

18

Kdb+ and WebSockets kx

http://code.kx.com/q/wp/permissions_with_kdb.pdf

As mentioned ‘above’ , all WebSocket messages will be processed by the .z.ws handler.
To fully secure a kdb+ system, this handler should be locked down in the same manner
as the .z.pg, .z.ps, .z.ph and .z.pp handlers.

As of kdb+ 3.4 we can use Secure Sockets Layer (SSL)/Transport Layer Security (TLS)
to encrypt connections using OpenSSL. This process will secure any WebSocket server
and upgrade its connection protocols to wss:// and https:// respectively.

 Cookbook: Secure sockets stunnel12

12. http://code.kx.com/q/cookbook/websockets/#secure-sockets-stunnel

19

Kdb+ and WebSockets kx

http://code.kx.com/q/cookbook/websockets/#secure-sockets-stunnel

A simple example – real-time data

This section will present a simple example in which some tables will be updated in
the browser in real-time.

The full code can be found in Appendix A along with start-up instructions in order
to get the example working. Some of the key features will be explained here. Once the
example is successfully running you should be able to see the following tables in your
browser continuously updating:

The web page shows the last quote and trade values for each symbol, and gives the user the ability to filter
the syms in view

The idea behind the pubsub mechanism here is that a client will make subscriptions
to specific functions and provide parameters that they should be executed with. The
subscription messages we send to the server will be sent as query strings so our .z.ws
message handler is defined to simply evaluate them.

q).z.ws:{value x}

Next, we initialize the trade and quote tables and upd function to mimic a simple
Real-Time Subscriber, along with a further table called subs, which we will use to
keep track of subscriptions.

// subs table to keep track of current subscriptions
q)subs:2!flip `handle`func`params`curData!"is**"$\:()

The subs table will store the handle, function name and function parameters for each
client. As we only want to send updates to a subscriber when something has changed,

20

Kdb+ and WebSockets kx

we store the current data held by each subscriber so that we can compare against it
later.

The functions that can be called and subscribed to by clients through the WebSocket
should be defined as necessary. In this example, we have defined a simple function
that will return a list of distinct syms that will be used to generate the filter checkboxes
on the client and additional functions to display the last record for each sym in both
the trade and quote tables. The aforementioned trade and quote table functions will
also accept an argument by which to filter the data if it is present.

//subscribe to something
sub:{`subs upsert(.z.w;x;enlist y)}
//publish data according to subs table
pub:{
row:(0!subs)[x];
(neg row[`handle]) .j.j (value row[`func])[row[`params]]
}

// trigger refresh every 1000ms
.z.ts:{pub each til count subs}
\t 1000

The subfunction will handle new subscriptions by upserting the handle, function
name and function parameters into the subs table. .z.wc will handle removing
subscriptions from the table whenever a connection is dropped.

The pub function is responsible for publishing data to the client. It takes an argument
that refers to a row index in the subs table and uses it to get the subscriptions function,
the parameters to use when calling that function and the handle that it will use in
sending the result to the client. Before doing so, it will also use .j.j to parse the result
into a JSON string. The client can then parse the JSON into a JavaScript object upon
arrival as it did in the earlier example. The pub function itself will be called on a timer
every second for each row in the subs table.

One thing that is important to be consider whenever using WebSockets is that the
JavaScript onmessage function needs a way in which to identify different responses
from one another. Each different response could have a different data structure that
will need to be handled differently. Perhaps some data should be used in populating
charts while other data for updating a table. If an identifier is present, it can be used
to ensure each response is handled accordingly. In this example, the responses func
value acts as our identifier. We can look at the func value and from that determine
which function should be called in order to handle the associated data.

ws.onmessage = function(e) {
/*parse message from JSON String into Object*/
var d = JSON.parse(e.data);
/*

depending on the messages func value,

21

Kdb+ and WebSockets kx

pass the result to the appropriate handler function
*/
switch(d.func){

case 'getSyms' : setSyms(d.result); break;
case 'getQuotes' : setQuotes(d.result); break;
case 'getTrades' : setTrades(d.result);

}
};

The rest of the JavaScript code for the client has been seen in previous examples. The
tables that update in the browser are simply being redrawn every time the client
receives a new response for the appropriate table.

The end result is a simplistic, interactive, real-time web application showing the latest
trade and quote data for a range of symbols. Its intention is to help readers understand
the basic concepts of kdb+ and WebSocket integration.

22

Kdb+ and WebSockets kx

Conclusion

This whitepaper has shown how WebSockets can be used as part of a HTML5 GUI to
connect to a q process and allow persistent, real-time communication between kdb+
and a web browser.

There are different methods for sending messages over the connection, and we have
seen how to parse kdb+ data into JSON objects using both server-side and client-side
methods. Both of these methods have their benefits and drawbacks so it is important
to consider the application infrastructure when deciding which method will be most
suitable. Serialising data across the connection is easy to achieve using the -8! and
-9! functions on the kdb+ server and the c.js code provided by Kx on the JavaScript
client. Alternatively, the kdb+ .j.j and .j.k functions can be used in conjunction
with a browser’s native JSON parser to achieve the same result.

Dashboards for Kx provide a range of great ways to visualize and analyze both real-time
streaming data and highly-optimized polled queries on intra-day and historical data.
Completely configurable, Dashboards for Kx enable clients to quickly build powerful
grids and charts of the underlying data stored within Kx and other databases.

 Dashboards for Kx13

All tests were run using kdb+ version 3.5 (2017.11.30)

13. http://kx.com/media/2016/07/Dashboards-for-Kx-Product-Overview.pdf

23

Kdb+ and WebSockets kx

http://kx.com/media/2016/07/Dashboards-for-Kx-Product-Overview.pdf

Appendices

The following code is also available on GitHub at kxcontrib/websocket14.

A. SimpleDemo.html

<!doctype html>
<html>
<head>

<title>WebSocket Demo</title>
<style>

/* define some CSS styling on page elements */
#txtInput {width: 85%; height: 60px; float:left; padding: 10px;}
#cmdInput {margin-left: 10px; width:10%; height:80px; font-weight: bold;}
#txtOutput {

width: 96%; height: 300px; font-family: "Courier New"; padding: 10px;
border: 1px solid gray; margin-top: 10px; overflow:auto;

}
</style>

</head>
<body>

<textarea id="txtInput" placeholder="q)"></textarea>
<button id="cmdInput" onclick="send();">Go</button>
<div id="txtOutput"></div>

</body>
<script>

var ws, cmd = "";
var input=document.getElementById("txtInput");
var output=document.getElementById("txtOutput");
function connect(){

if ("WebSocket" in window) {
ws = new WebSocket("ws://localhost:5001/");
output.value="connecting...";
ws.onopen=function(e){output.innerHTML="connected"};
ws.onclose=function(e){output.innerHTML="disconnected"};
ws.onerror=function(e){output.value=e.data};
/*

when a message is received,
prepend the message to the display area
along with the input command

*/
ws.onmessage=function(e){

/*
the message is in plain text, so we need to convert
' ' to ' 'and '\n' to '
' in order to display
spaces and newlines correctly within the HTML markup

*/
var formattedResponse = e.data.replace(/ /g, ' ')

14. https://github.com/kxcontrib/websocket

24

Kdb+ and WebSockets kx

https://github.com/kxcontrib/websocket

.replace(/\n/g, '
');
output.innerHTML = cmd + formattedResponse + output.innerHTML;
cmd="";

}
} else alert("WebSockets not supported on your browser.");

}
function send(){

/*
store the input command so that we can access it later
to print in with the response

*/
cmd = "q)" + input.value + "
";
/* send the input command across the WebSocket connection */
ws.send(input.value);
/*

reset the input test box to empty, and
focus the cursor back on it ready for the next input

*/
input.value="";
input.focus();

}
connect(); //call the connect function

</script>
</html>

B. Publish and subscribe
Below are four separate scripts which can be copied into a text editor and saved with
the respective names in the same directory. Start the q processes up first, and then
open the HTML file in a web browser.

B.1 pubsub.q

Start this process first. It will create the q interface for the WebSocket connections
and contains a simple pubsub mechanism to push data to clients when there are
updates.

\p 5001
.z.ws:{value x};
.z.wc: {delete from `subs where handle=x};

/* table definitions */
trade:flip `time`sym`price`size!"nsfi"$\:();
quote:flip `time`sym`bid`ask!"nsff"$\:();
upd:insert;

/* subs table to keep track of current subscriptions */
subs:2!flip `handle`func`params!"is*"$\:();

/* functions to be called through WebSocket */
loadPage:{ getSyms[.z.w]; sub[`getQuotes;enlist `]; sub[`getTrades;enlist `]};
filterSyms:{ sub[`getQuotes;x];sub[`getTrades;x]};

25

Kdb+ and WebSockets kx

getSyms:{ (neg[x]) .j.j `func`result!(`getSyms;distinct (quote`sym),trade`sym)};

getQuotes:{
filter:$[all raze null x;distinct quote`sym;raze x];
res: 0!select last bid,last ask by sym,last time from quote where sym in filter;
`func`result!(`getQuotes;res)};

getTrades:{
filter:$[all raze null x;distinct trade`sym;raze x];
res: 0!select last price,last size by sym,last time from trade where sym in filter;
`func`result!(`getTrades;res)};

/*subscribe to something */
sub:{`subs upsert(.z.w;x;enlist y)};

/*publish data according to subs table */
pub:{
row:(0!subs)[x];
(neg row[`handle]) .j.j (value row[`func])[row[`params]]
};

/* trigger refresh every 100ms */
.z.ts:{pub each til count subs};
\t 1000

B.2 fh.q

This will generate dummy trade and quote data and push it to the pubsub process.
The script can be edited to change the number of symbols and frequency of updates.

/* q fh.q */
h:neg hopen `:localhost:5001; /* connect to rdb */
syms:`MSFT.O`IBM.N`GS.N`BA.N`VOD.L; /* stocks */
prices:syms!45.15 191.10 178.50 128.04 341.30 ; /* starting prices */
n:2; /* number of rows per update */
flag:1; /* generate 10% of updates for trade and 90% for quote */
getmovement:{[s] rand[0.001]*prices[s]}; /* get a random price movement */

/* generate trade price */
getprice:{[s] prices[s]+:rand[1 -1]*getmovement[s]; prices[s]};
getbid:{[s] prices[s]-getmovement[s]}; /* generate bid price */
getask:{[s] prices[s]+getmovement[s]}; /* generate ask price */

/* timer function */
.z.ts:{
s:n?syms;
$[0<flag mod 10;
h(`upd;`quote;(n#.z.N;s;getbid'[s];getask'[s]));
h(`upd;`trade;(n#.z.N;s;getprice'[s];n?1000))
];
flag+:1;
};

26

Kdb+ and WebSockets kx

/* trigger timer every 100ms */
\t 100

This code is from the August 2014 whitepaper Building Real-time Tick Subscribers15.

B.3 websockets.html

Due to the length of code required for this example, the JavaScript and HTML code
have been split into separate files

<!doctype html>
<html>
<head>

<title>WebSocket PubSub Example</title>
</head>
<body onload="connect();">

<!-- Create a section to filter on syms -->
<section class="select">

<h3>Select Syms: </h3>
<div id="selectSyms"></div>
<button type="submit" onclick="filterSyms();">Filter</button>

</section>
<!-- Set up placeholders to display the trade and quote outputs -->
<section id="quotes" class="display">

<div class="split">
<h3>Quotes</h3>
<table id="tblQuote"></table>

</div>
<div class="split">

<h3>Trades</h3>
<table id="tblTrade"></table>

</div>
</section>
<!-- Load JavaScript file -->
<script src="websockets.js"></script>
<!-- Define some CSS styling on page elements -->
<style>

section {margin:10px;padding:20px;width:95%;}
button {margin:10px;}
h3 {margin:5px;}
table {border-collapse:collapse;text-align:center;width:100%;}
td,th {border:1px solid black;padding:5px 20px;width:25%}
.split {float:left;width:45%;margin-right:20px;display:table;}
#selectSyms {padding:10px;min-height:30px;}

</style>
</body>
</html>

15. http://code.kx.com/q/wp/building_real_time_tick_subscribers.pdf

27

Kdb+ and WebSockets kx

http://code.kx.com/q/wp/building_real_time_tick_subscribers.pdf

B.4 websockets.js

This script will be loaded into the web page by the HTML. Make sure this is saved as
a JS file in the same directory as the above HTML file.

/* initialise variable */
var ws, syms = document.getElementById("selectSyms"),

quotes = document.getElementById("tblQuote"),
trades = document.getElementById("tblTrade");

function connect() {
if ("WebSocket" in window) {

ws = new WebSocket("ws://localhost:5001");
ws.onopen = function(e) {

/* on successful connection, we want to create an
initial subscription to load all the data into the page*/
ws.send("loadPage[]");

};

ws.onmessage = function(e) {
/*parse message from JSON String into Object*/
var d = JSON.parse(e.data);
/*depending on the messages func value, pass the result
to the appropriate handler function*/
switch(d.func){

case 'getSyms' : setSyms(d.result); break;
case 'getQuotes' : setQuotes(d.result); break;
case 'getTrades' : setTrades(d.result);

}
};
ws.onclose = function(e){ console.log("disconnected")};
ws.onerror = function(e){ console.log(e.data)};

} else alert("WebSockets not supported on your browser.");
}

function filterSyms() {
/* get the values of checkboxes that are ticked and
convert into an array of strings */
var t = [], s = syms.children;
for (var i = 0; i < s.length; i++) {

if (s[i].checked) {
t.push(s[i].value);

};
};
t = t.join("`");
/*call the filterSyms function over the WebSocket*/
ws.send('filterSyms[`'+ t +']');

}

function setSyms(data) {
/* parse an array of strings into checkboxes */
syms.innerHTML = '';
for (var i = 0; i < data.length; i++) {

syms.innerHTML += '<input type="checkbox" name="sym" value="' +
data[i] + '">' + data[i] + '</input>';

};

28

Kdb+ and WebSockets kx

}

function setQuotes(data) { quotes.innerHTML = generateTableHTML(data) }
function setTrades(data) { trades.innerHTML = generateTableHTML(data) }

function generateTableHTML(data){
/* we will iterate through the object wrapping it in the HTML table tags */
var tableHTML = '<table border="1"><tr>';
for (var x in data[0]) {

/* loop through the keys to create the table headers */
tableHTML += '<th>' + x + '</th>';

}
tableHTML += '</tr>';
for (var i = 0; i < data.length; i++) {

/* loop through the rows, putting tags around each col value */
tableHTML += '<tr>';
for (var x in data[0]) {

/* Instead of pumping out the raw data to the table, let's
format it according to its type*/
var cellData;
if("time" === x)

cellData = data[i][x].substring(2,10);
else if("number" == typeof data[i][x])

cellData = data[i][x].toFixed(2);
else cellData = data[i][x];
tableHTML += '<td>' + cellData + '</td>';

}
tableHTML += '</tr>';

}
tableHTML += '</table>';
return tableHTML;

}

29

Kdb+ and WebSockets kx

	What are WebSockets?
	Connecting to kdb+ using WebSockets
	Converting kdb+ to JSON
	Viewing traffic over a WebSocket connection
	WebSocket security
	A simple example – real-time data
	Conclusion
	Appendices

