

 Skip to content

 [image: logo]

 Kdb+ and q documentation

 Transaction-cost analysis using kdb+ | White papers | q and kdb+documentation

 Initializing search

 Ask a question

 	

 Home

	

 kdb+ and q

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

	

 Language

	

 Database

	

 Developing

	

 Architecture

	

 Help

 [image: logo]

 Kdb+ and q documentation

 	

 Home

	

 kdb+ and q

 kdb+ and q

 	

 About

	

 Reference card

	

 Developer tools

	

 Interfaces

 Interfaces

 	

 KX libraries

	

 Bloomberg

	

 C/C++

 C/C++

 	

 Quick guide

	

 API reference

	

 C API for kdb+ (WP)

	

 Using C/C++ functions

	

 Excel

	

 FIX messaging (WP)

	

 GPUs

	

 Lightning tickerplants (WP)

	

 Matlab

	

 ODBC

	

 ODBC3

	

 R

	

 Scala

	

 Open source

	

 Machine learning

	

 Using kdb+ in the cloud

 Using kdb+ in the cloud

 	

 About

	

 Amazon Web Services

 Amazon Web Services

 	

 Reference architecture

	

 Amazon EC2 & Storage Services

 Amazon EC2 & Storage Services

 	

 Migrating a kdb+ HDB to Amazon EC2

	

 Elastic Block Store (EBS)

	

 EFS (NFS)

	

 Amazon Storage Gateway

	

 FSx for Lustre

	

 AWS Lambda

	

 Microsoft Azure

 Microsoft Azure

 	

 Reference architecture

	

 Google Cloud

 Google Cloud

 	

 Reference architecture

	

 Auto Scaling (WP)

 Auto Scaling (WP)

 	

 About

	

 Amazon Web Services

	

 Realtime data cluster

	

 Costs and risks

	

 Surveillance in the Cloud (WP)

	

 Other file systems

 Other file systems

 	

 MapR-FS

	

 Goofys

	

 S3FS

	

 S3QL

	

 ObjectiveFS

	

 WekaIO Matrix

	

 Quobyte

	

 DigitalOcean

	

 Community

	

 kdb+ and q forum

	

 White papers

	

 About this site

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

 Learn

 	

 Get started

	

 Install

	

 Licenses

	

 Mountain tour

 Mountain tour

 	

 Overview

	

 Begin here

	

 The q session

	

 Tables

	

 CSVs

	

 Datatypes

	

 Scripts

	

 IDE

	

 Q for quants

	

 Q by Examples

	

 Q for All

	

 Examples from Python

 Examples from Python

 	

 Basic

	

 Array

	

 List

	

 Strings

	

 Dictionaries

	

 Q for Mortals 3

	

 Q by Puzzles

 Q by Puzzles

 	

 About

	

 12 Days of Xmas

	

 ABC problem

	

 Abundant odds

	

 Four is magic

	

 Name Game

	

 Summarize and Say

	

 Word wheel

	

 Reading room

 Reading room

 	

 Information desk

	

 Boggle

	

 Cats cradle

	

 Fizz buzz

	

 Klondike

	

 Phrasebook

	

 Scrabble

	

 Application examples

 Application examples

 	

 Astronomy (WP)

	

 Bitcoin blockchains (WP)

	

 Card counters (WP)

	

 Corporate actions (WP)

	

 Disaster management (WP)

	

 Exoplanets (WP)

	

 Market depth (WP)

	

 Market fragmentation (WP)

	

 Option pricing (WP)

	

 Predicting floods (WP)

	

 Signal processing (WP)

	

 Space weather (WP)

	

 Trading surveillance (WP)

	

 Transaction-cost analysis (WP)

 Transaction-cost analysis (WP)

 On this page

 	

 Post-trade analysis

 	

 Point in time

	

 Interval

	

 Market data filtering

 	

 Table schema design and query performance

 	

 Schema I

	

 Schema II

	

 Schema III

	

 Pre-calculation

	

 Conclusion

	

 Author

	

 Trend indicators (WP)

	

 Advanced q

 Advanced q

 	

 Remarks on Style

	

 Shifts & scans

	

 Technical articles

	

 Views

	

 Origins

	

 Terminology

	

 Starting kdb+

 Starting kdb+

 	

 Overview

	

 The q language

	

 IPC

	

 Tables

	

 Historical database

	

 Realtime database

	

 Language

 Language

 	

 Reference card

	

 By topic

	

 Iteration

 Iteration

 	

 Overview

	

 Implicit iteration

	

 Iterators

	

 Maps

	

 Accumulators

	

 Guide to iterators (WP)

	

 Keywords

 Keywords

 	

 abs

	

 aj, aj0, ajf, ajf0

	

 all, any

	

 and

	

 asc, iasc, xasc

	

 asof

	

 attr

	

 avg, avgs, mavg, wavg

	

 bin, binr

	

 ceiling

	

 count, mcount

	

 cols, xcol, xcols

	

 cor

	

 cos, acos

	

 cov, scov

	

 cross

	

 csv

	

 cut

	

 delete

	

 deltas

	

 desc, idesc, xdesc

	

 dev, mdev, sdev

	

 differ

	

 distinct

	

 div

	

 dsave

	

 each, peach

	

 ej

	

 ema

	

 enlist

	

 eval, reval

	

 except

	

 exec

	

 exit

	

 exp, xexp

	

 fby

	

 fills

	

 first, last

	

 fkeys

	

 flip

	

 floor

	

 get, set

	

 getenv, setenv

	

 group

	

 gtime, ltime

	

 hcount

	

 hdel

	

 hopen, hclose

	

 hsym

	

 ij, ijf

	

 in

	

 insert

	

 inter

	

 inv

	

 key

	

 keys, xkey

	

 like

	

 lj, ljf

	

 load, rload

	

 log, xlog

	

 lower

	

 lsq

	

 max, maxs, mmax

	

 md5

	

 med

	

 meta

	

 min, mins, mmin

	

 mmu

	

 mod

	

 neg

	

 next, prev, xprev

	

 not

	

 null

	

 or

	

 over, scan

	

 parse

	

 pj

	

 prd, prds

	

 prior

	

 rand

	

 rank

	

 ratios

	

 raze

	

 read0

	

 read1

	

 reciprocal

	

 reverse

	

 rotate

	

 save, rsave

	

 select

	

 show

	

 signum

	

 sin, asin

	

 sqrt

	

 ss, ssr

	

 string

	

 sublist

	

 sum, sums, msum, wsum

	

 sv

	

 system

	

 tables

	

 tan, atan

	

 til

	

 trim, ltrim, rtrim

	

 type

	

 uj, ujf

	

 union

	

 ungroup

	

 update

	

 upsert

	

 value

	

 var, svar

	

 view, views

	

 vs

	

 where

	

 within

	

 wj, wj1

	

 xbar

	

 xgroup

	

 xrank

	

 Overloaded glyphs

	

 Operators

 Operators

 	

 Add

	

 Amend

	

 Apply, Index, Trap

	

 Assign

	

 Cast

	

 Coalesce

	

 Compose

	

 Cut

	

 Deal, Roll, Permute

	

 Delete

	

 Display

	

 Dict

	

 Divide

	

 Dynamic Load

	

 Drop

	

 Enkey, Unkey

	

 Enumerate

	

 Enumeration

	

 Enum Extend

	

 Equal

	

 Exec

	

 File Binary

	

 File Text

	

 Fill

	

 Find

	

 Flip Splayed

	

 Greater

	

 Greater Than

	

 Identity, Null

	

 Join

	

 Less Than

	

 Lesser

	

 Match

	

 Matrix Multiply

	

 Multiply

	

 Not Equal

	

 Pad

	

 Select

	

 Set Attribute

	

 Simple Exec

	

 Signal

	

 Subtract

	

 Take

	

 Tok

	

 Update

	

 Vector Conditional

	

 Control constructs

 Control constructs

 	

 Cond

	

 do

	

 if

	

 while

	

 Namespaces

 Namespaces

 	

 .h

	

 .j

	

 .m

	

 .Q

	

 .z

	

 Application

	

 Atomic functions

	

 Comparison

	

 Conformability

	

 Connection handles

	

 Datatypes

	

 Dictionaries

	

 Enumerations

	

 Evaluation control

	

 Exposed infrastructure

	

 File system

	

 Function notation

	

 Functional qSQL

	

 Glossary

	

 Internal functions

	

 Joins

	

 Mathematics

	

 Metadata

	

 Namespaces

	

 Parse trees

	

 Parse trees, functional SQL (WP)

	

 QSQL queries

	

 Regular Expressions

	

 Syntax

	

 Tables

	

 Variadic syntax

	

 Database

 Database

 	

 Tables in the filesystem

	

 Populating tables

 Populating tables

 	

 Loading from large files

	

 Foreign keys (WP)

	

 Linking columns

	

 Data loaders (WP)

	

 From MDB via ODBC

	

 Persisting tables

 Persisting tables

 	

 Serializing an object

	

 Splayed tables

	

 Partitioned tables

	

 Segmented databases

	

 Multiple partitions (WP)

	

 Maintenance

 Maintenance

 	

 Data management (WP)

	

 Data-At-Rest Encryption

	

 File compression

	

 Compression (WP)

	

 Permissions (WP)

	

 Query optimization (WP)

	

 Query scaling (WP)

	

 Time-series simplification (WP)

	

 Compacting HDB sym

	

 Working with sym files (WP)

	

 Developing

 Developing

 	

 IPC

 IPC

 	

 Overview

	

 Callbacks

	

 Listening port

	

 Named pipes

	

 Serialization examples

	

 Server calling client

	

 Socket sharding (WP)

	

 SSL/TLS

	

 WebSockets

	

 Interprocess communication (WP)

	

 Tools

 Tools

 	

 Code profiler

	

 Debugging

	

 Errors

	

 man.q

	

 System commands

	

 Unit tests

	

 Using .z

	

 Coding

 Coding

 	

 Data visualization (WP)

	

 Deferred response

	

 Geospatial indexing

	

 Linear programming

	

 Multithreaded input

	

 Multithreaded primitives

	

 Pivoting tables

	

 Precision

	

 Programming examples

	

 Programming idioms

	

 Temporal data

	

 Timezones

	

 Unicode

	

 DevOps

 DevOps

 	

 Authentication and access

	

 Command-line options

	

 CPU affinity

	

 Custom web server

	

 Daemon

	

 Firewalling

	

 inetd, xinetd

	

 Linux production notes

	

 Logging

	

 Multi-threading (WP)

	

 Multiple versions

	

 Parallel processing

	

 Performance tips

	

 Replay logfile

	

 Shebang script

	

 Surveillance latency (WP)

	

 Windows service

	

 Release notes

 Release notes

 	

 History

	

 Changes in 4.1

	

 Changes in 4.0

	

 Changes in 3.6

	

 Changes in 3.5

	

 Changes in 3.4

	

 Changes in 3.3

	

 Changes in 3.2

	

 Changes in 3.1

	

 Changes in 3.0

	

 Changes in 2.8

	

 Changes in 2.7

	

 Changes in 2.6

	

 Changes in 2.5

	

 Changes in 2.4

	

 Withdrawn

	

 FAQ

	

 Architecture

 Architecture

 	

 About

	

 Examples

	

 Alternative in-memory layouts

	

 Chained tickerplant

	

 Client-server

	

 Corporate actions

	

 Data recovery for kdb+tick (WP)

	

 Disaster recovery (WP)

	

 Gateway design (WP)

	

 Kdb+tick configuration

	

 Kdb+tick profiling (WP)

	

 Kubernetes

	

 Load balancing

	

 Memory backed by files

	

 Optane Memory

 Optane Memory

 	

 Optane Memory and kdb+

	

 Performance tests

	

 Order Book (WP)

	

 Publish and subscribe

	

 Pub/sub with Solace (WP)

	

 Query Routing (WP)

	

 Real-time tick subscribers (WP)

	

 WebSockets (WP)

	

 Write-only RDB

	

 Advanced

 Advanced

 	

 Distributed systems (WP)

	

 Intraday writedown (WP)

	

 Help

 On this page

 	

 Post-trade analysis

 	

 Point in time

	

 Interval

	

 Market data filtering

 	

 Table schema design and query performance

 	

 Schema I

	

 Schema II

	

 Schema III

	

 Pre-calculation

	

 Conclusion

	

 Author

White paper

Transaction-cost analysis using kdb+¶

by Colm Earley

With the ever-increasing volatility of financial markets and multitude of trading venues as a result of market fragmentation, transaction-cost analysis (TCA) has become one of the expected functions provided to a client by their broker dealer. The buy side has also become more sophisticated in recent years in acquiring their own TCA tools as they seek more transparency around their trading. These firms now strive to measure their real execution performance, feeding statistics into their portfolio strategies, market-impact models and, of course, relaying their level of service satisfaction back to their brokers.

One attribute that is common across many TCA functions is the need to align market data with trade execution data and summarize the differences between perceived versus actual trade prices. Kdb+ enables users to run joins and update benchmarks on a tick-by-tick basis intra day and scan hundreds of billions of records on disk in seconds. The two use cases synonymous with TCA are:

	Real-time and historical slippage calculations
	Market impact profiling

Slippage, at its most basic, is a measure of the difference between the price at the time of your decision and the price actually paid at execution, i.e. the fill message reported by the broker. Slippage can be influenced by many things such as commissions, settlement costs and latency between venues and market impact.

Market-impact testing not only enables traders and brokers to refine their execution strategies to ensure they get as good a price as possible, it is also an area where the business can develop algorithms that use backtested leading indicators to predict when a market-impact event is going to take place, which in turn provides trading opportunities.

Kdb+ has been deployed in both sell-side and buy-side firms to serve as the data and analysis backbone of TCA environments. These systems capture, process and store increasing amounts of tick and transaction data in intra-day processes and historical partitions on disk. Kdb+ as a technology has several characteristics including a rich set of time-series primitives, which make data retrieval extremely fast and efficient.

This white paper, focusing primarily on post-trade analysis, details a number of the most commonly-used queries and the q language functions that relate to them. Methods are described for performing analysis efficiently across many terabytes of data. This is followed by an overview of a database design and tips on data access with query performance in mind. Reference is made on how to apply the key points learned to common use cases. The paper concludes with a brief overview of some general optimization techniques.

Post-trade analysis¶

One of the most powerful use cases for kdb+ is transaction-cost analysis. Kdb+ makes it both simple and efficient to sift through tens of terabytes of data. For this discussion, I am going to categorize queries into one of the following two types:

	point-in-time
	interval

Point in time¶

The point-in-time query is commonly used by analysts to compare performance against a benchmark at a specific point in time during the trading day. For TCA this may be used for comparing slippage between the decision price/price in the market to the effective execution price (trade price minus trading costs). This is also known as implementation shortfall.

A powerful built-in function in q makes this point-in-time query a trivial operation – the aj or as-of join.

Reference: aj

It takes three arguments:

	the columns to join on
	a reference table
	the table we wish to search through

An equivalency check is performed on the initial columns and a binary search on the last. The normal expectation is to join on some market environment data immediately preceding an event, thus returning the prevailing value, as a result that is what is carried out here.

Two possible ways of measuring implementation shortfall are to compare a given set of internal execution data against either the prevailing mid-price or last trade price.

/ sample of 10 quotes
q:`time xasc ([]
 sym:10#`FDP;
 time:09:30t+00:30t*til 10;
 bid:100.+0.01*til 10;
 ask:101.+0.01*til 10)

/ sample execution data
e:([]sym:1#`FDP;
 time:1#11:20t;
 exprice:1#100.55;
 exsize:1#200)

/ table of trades
t:`time xasc ([]
 sym:10#`FDP;
 time:09:30t+00:30t*til 10;
 price:100.+0.01*til 10;
 size:10#100)

q)q / sample quotes
sym time bid ask

FDP 09:30:00.000 100 101
FDP 10:00:00.000 100.01 101.01
FDP 10:30:00.000 100.02 101.02
FDP 11:00:00.000 100.03 101.03
FDP 11:30:00.000 100.04 101.04
FDP 12:00:00.000 100.05 101.05
FDP 12:30:00.000 100.06 101.06
FDP 13:00:00.000 100.07 101.07
FDP 13:30:00.000 100.08 101.08
FDP 14:00:00.000 100.09 101.09

q)e / sample execution data
sym time exprice exsize

FDP 11:20:00.000 100.55 200

q)/ comparing against market mid
q)update mid:0.5*bid+ask from aj[`sym`time;e;q]
sym time price size bid ask mid

FDP 11:20:00.000 100.55 200 100.03 101.03 100.53

q)/ similarly comparing against last price
q)aj[`sym`time;e;t]
sym time exprice exsize price size

FDP 11:20:00.000 100.55 200 100.03 100

Depending on whether your table is in-memory or on disk, correct attribute usage should be employed.

Reference: aj

Interval¶

During a trading day, a common need is to analyze the market behavior over a set time interval. Interval use cases include comparing our execution price to the market price range during the interval, our vwap (volume-weighted average price) to the market vwap, our trading volume as a percentage of market participation. Kdb+ provides another tool in its arsenal to retrieve these types of data both effectively and efficiently – the wj or window join. It allows the user to perform an arbitrary number of functions across a time interval.

The following example details two 5,000-share orders. For each, they have both been worked over five-minute periods, in five batches of 1,000 share executions. The difference between them is the time of day at which they traded. The objective is to return volatility metrics, such as market trade price range, over each order.

/ sample market trades
nt:100000

t:`time xasc ([]
 sym:nt#`FDP;
 time:09:30t+nt?06:30t;
 price:100+(nt?100)%100;
 size:100*1+nt?10)

/ in-memory table should have both grouped and sorted attributes
update `g#sym from `t

/ sample execution data
/ exprice – execution price
/ exsize - execution size
/ orderid - order id, the parent order, of which,
/ the individual execution belongs to
e:`time xasc ([]
 sym:10#`FDP;
 time:raze 10:00 15:00t+\:00:01t*til[5];
 exprice:100+(10?100)%100;
 exsize:10#1000;
 orderid:(5#0), 5#1)

q)t / market trades
sym time price size

FDP 09:30:00.099 100.25 100
FDP 09:30:00.320 100.24 900
FDP 09:30:00.333 100.18 900
..

q)e / execution data
sym time exprice exsize orderid

FDP 10:00:00.000 100.25 1000 0
FDP 10:01:00.000 100.3 1000 0
FDP 10:02:00.000 100.18 1000 0
FDP 10:03:00.000 100.08 1000 0
FDP 10:04:00.000 100.47 1000 0
FDP 15:00:00.000 100.49 1000 1
FDP 15:01:00.000 100.92 1000 1
FDP 15:02:00.000 100.98 1000 1
FDP 15:03:00.000 100.75 1000 1
FDP 15:04:00.000 100.42 1000 1

q)/ vwap for each order
q)summary:0!select (first[time];last[time]),vwap:exsize wavg exprice
 by sym,orderid from e
q)summary
sym orderid time vwap

FDP 0 10:00:00.000 10:04:00.000 100.256
FDP 1 15:00:00.000 15:04:00.000 100.712

q)/ market volume and price range over the order lifetimes
q)wj[flip exec time from summary; `sym`time; summary;
 (t;(min;`price);(max;`price))]
sym orderid time vwap price price
--
FDP 0 10:00:00.000 10:04:00.000 100.256 100 100.99
FDP 1 15:00:00.000 15:04:00.000 100.712 100 100.99

It should be noted that wj works only on unary functions. Although the full dataset can be returned and the results aggregated, this can be inefficient and result in excess memory usage. The example below shows how, for vwap, it is more efficient to use two ajs to generate an intermediate result and subsequently reduce it.

q)/ simulate 10000 orders to join on
q)orders:update orderid:til count i from 10000#0!summary
q)orders
sym orderid time vwap

FDP 0 10:00:00.000 10:04:00.000 100.558
FDP 1 15:00:00.000 15:04:00.000 100.534
FDP 2 10:00:00.000 10:04:00.000 100.558
FDP 3 15:00:00.000 15:04:00.000 100.534
..

q)/ window join
q)\ts select
 sym, orderid, time, vwap, marketVwap:wavg'[size;price]
 from wj1[flip exec time from orders; `sym`time; orders;
 (t;(::;`size);(::;`price))]
300 328731424

q)/ 2 ajs
q)orders1:ungroup orders
q)\ts select
 first vwap, marketVwap:(last[val]-first val)%(last[volume]-first[volume])
 by sym, orderid
 from aj[`sym`time; orders1;
 select sym, time, val:sums price*size, volume:sums size from t]
41 2918528

The above illustrates that for this type of query the aj is an order of magnitude faster and uses two orders of magnitude less space than the window join. This is because the data does not need to be copied for every order record.

Market data filtering¶

Table schema design and query performance¶

Sub-optimal query construction can be the cause of many bottlenecks. One of the causes of this is trying to include too much computation within a query. Very often, the same logic is used repeatedly. Therefore, we find ourselves carrying out the same calculations across different queries. It is preferable to generalize the logic, move it from the query to the feed-handlers, and amortize the calculation over the whole day.

Below are three hypothetical schemas ranging from tight coupling of market-data logic and business requirements to complete isolation. Each has its own pros and cons. Our exchange in this example has four conditions:

	Bunched Trade
	
Multiple trades which are combined together and the average price published. We may wish to exclude these from last queries, because the reported price is not a true trade price.

	Out of Sequence
	
These could include late-reported trades. We may exclude these from last price queries, as we cannot tell for certain when they occurred.

	Off Exchange
	
Examples of these are trades which occur on dark pools. A dark pool may wish to estimate their market share with other off-exchange venues.

	Auction
	
These are usually trades which are preceded by a bidding period used to fix the opening and closing prices. We may wish to include only trades within these bounds, as pre- and post-market trades can be too volatile.

We wish to retrieve the vwap over a period and for our purpose Bunched Trade, Out of Sequence, and Off Exchange are not eligible for vwap calculations. Reasons for excluding these from our implementation could include:

	The Bunched Trade price calculation is not public. It may not be weighted by the size of each constituent trade.
	The time of the Out of Sequence trade cannot be guaranteed to have occurred during the period under analysis.
	Similarly, the Off Exchange trade may have been published late and thus, the time of it may not be trustworthy.

Schema I¶

Schema I has a character-array column for storing trade conditions. This type of schema enables our query implementation to be very flexible. However, the downside is that string comparison can be very slow. In addition, if a new condition is added which affects vwap eligibility, each dependent query must also be updated.

/ sample market trade data
n:1000000
t:`time xasc ([]
 sym:n#`FDP;
 time:09:30t+n?06:30t;
 price:100+(n?100)%100;
 size:100*1+n?10;
 cond:neg[1+n?2]?\:"ABCD")

q)t
sym time price size cond

FDP 09:30:00.027 100.72 900 "DC"
FDP 09:30:00.029 100 800 "BA"
FDP 09:30:00.030 100.34 900 "CA"
..

q)/ string comparison
q)\ts select from t where not any cond like/:("*A*";"*B*";"*C*")
248 5243536

Schema II¶

Schema II has separated out the trade conditions by adding a Boolean flag column for each type of condition. This is very flexible on the implementation of the query. It is also more efficient as we can see from our load test result below. However, with this flexibility it suffers the same drawback as Schema I therefore all dependent queries will need to be changed if there is a condition change. Furthermore, the table schema may need to be amended if a new condition is added. The extra disk space is not an issue if on-disk compression is used as Boolean columns compress very efficiently.

q)t / boolean columns for conditions added
sym time price size cond A B C D

FDP 09:30:00.027 100.72 900 "DC" 0 0 1 1
FDP 09:30:00.029 100 800 "BA" 1 1 0 0
FDP 09:30:00.030 100.34 900 "CA" 1 0 1 0
..
q)\ts select from t where not A or B or C
16 5374496

Schema III¶

Schema III is a more general form of Schema II above. Boolean flags are added for the general idea of vwap eligibility but not for each condition. The loss in query implementation flexibility is offset against the benefit gained through the introduction of a layer of abstraction between the market data and business logic. Queries can now be developed in a more general form that covers all exchanges, and not every developer needs to be a market-data expert. If a trade condition changes the vwap eligibility, a data migration to update all historical dates may be needed, but this should be seamless to the query. An efficient migration can rewrite only the Boolean-flag column without having to write all of the data.

Take great care when performing migrations on on-disk databases.

q)t / Compound boolean column for vwap eligibility
sym time price size cond vwapEl
--
FDP 09:30:00.027 100.72 900 "DC" 0
FDP 09:30:00.029 100 800 "BA" 0
FDP 09:30:00.030 100.34 900 "CA" 0
..
q)\ts select from t where vwapEl
16 5374368

Pre-calculation¶

Generally, the simplest way to optimize performance is to reduce the dataset being accessed. As trade and quote volumes continue to grow, one should take advantage of any way to avoid searching through a full day of trade or quote data.

One basic example is to use pre-calculated one-minute bars if one-minute granularity is sufficient for your calculation. Below we can see that the native bar retrieval time for this example is more than twice as fast calculating it from the raw trades and quotes at run-time. The data sets for the above examples are 360MM trade and quote records versus 9MM bar records for 37,000 unique symbols.

q)/ Operating System Cache is Cold

q)/ generating bars from raw trades and quotes
q)\ts aj[
 `sym`time;
 select
 firstTradePrice:first price,
 volume:sum size by date,
 `p#sym,
 time:`time$time.minute
 from trade where date=d, sym in `FDP1`FDP2`FDP3`FDP4;
 select date, sym, time, openBid:bid, openAsk:ask from quote where date=d]
2691 2155880464

q)/ retrieving bars from native bar table
q)\ts select date, sym, bar, firstTradePrice, volume, openBid, openAsk
 from bar where date=d, sym in `FDP1`FDP2`FDP3`FDP4
1090 183184

Knowledge Base: Performance tips

On subsequent runs, when the data is now in the operating-system cache, the speed-up is even more pronounced at almost 500×. If this is a calculation, which is repeatedly performed, the argument to pre-calculate is even stronger.

q)/ Data is now in Operating System Cache

q)/ generating bars from raw trades and quotes
q)\ts aj[
 `sym`time;
 select
 firstTradePrice:first price,
 volume:sum size by date,
 sym,
 time:`time$time.minute
 from trade where date=d, sym in `FDP1`FDP2`FDP3`FDP4;
 select date, sym, time, openBid:bid, openAsk:ask from quote where date=d]
489 2155880464

q)/ retrieving bars from native bar table
q)\ts select date, sym, bar, firstTradePrice, volume, openBid, openAsk
 from bar where date=d, sym in `FDP1`FDP2`FDP3`FDP4
1 183184

Taking this a step further, one should also store data, which can be aggregated by day and accessed regularly in a separate table for optimal access. In the example below, only a small number of columns are included, but this could be easily expanded. Other useful daily data may include auction volumes, block trades, trade count and average quote size to name but a few.

q)/ Retrieving Daily from Raw Ticks.
q)/ openAuc and closeAuc are assumed boolean columns
q)/ as discussed above for Schema III
q)\ts select
 open:first price where openAuc,
 openTime:first time where openAuc,
 close:last price where closeAuc,
 closeTime:first time where closeAuc
 by date, sym
 from trade where date=d, sym in `FDP1`FDP2`FDP3`FDP4
671 5246432

q)/ retrieving from dedicated daily table
q)\ts select date, sym, open, openTime, close, closeTime
 from daily where date=d, sym in `FDP1`FDP2`FDP3`FDP4
28 2622528

The partitioning structure you choose will depend on your access pattern, number of columns and records. If you are retrieving data for multiple dates at once and the number of records and columns is small, a plain vanilla splayed table may suffice. Otherwise, partitioning by month or by year should investigated.

A benefit of having the pre-fetched daily data above is the ease with which we can prime dictionary caches; for example, to restrict queries to within market hours. However, it is highly improbable that every symbol will open exactly as the exchange opens. The actual opening times (for some exchanges, auction trade times) can vary from symbol to symbol. We can create a symbol and date to bounds cache without having to query the complete trade history:

/ Generate cache
dateSymbol2hours:exec (first openTime;first closeTime)
 by date, symbol from daily

/ Dummy dictionary to show a different mapping is used
dateSymbol2hours[([]date:3#2013.04.22; sym:`FDP1`FDP2`FDP3)]:
 (13:30 13:35t;14:30 14:35t;15:30 15:35t)

q)/ Mapping within a query
q)select
 firstTime:min time,
 firstHoursTime:min time where extime within flip dr2t[([]date;sym)]
 by date, sym
 from rtrade where date=d, sym in `FDP1`FDP2`FDP3
date sym	firstTime firstHoursTime
2013.04.22 FDP1 | 08:03:42.113 13:30:00.023
2013.04.22 FDP2 | 10:57:30.935 14:30:02.532
2013.04.22 FDP3 | 08:29:58.950 15:30:17.567

Conclusion¶

This white paper provides a brief introduction to performing transaction-cost analysis using kdb+. The technology enables both brokers and buy-side firms to run analysis on high-frequency data that can often overwhelm traditional database and event-processing systems. Speedy analytics such as aligning trades with the prevailing best bid&ask, implementation shortfall, market impact profiles and slippage statistics gives traders the ability to minimize opportunity costs as well as develop ideas to take advantage of market trends. The execution and enhancement of trading strategies can then be easily adjusted intra-day to reflect occurrences in the market.

Having this ability to capture massive volumes of high- and low-frequency market, execution and news data not only aids firms in pinpointing direct execution costs, it also provides a mechanism to measure negative aspects of the trade life cycle, which can often be hidden. While this paper does not discuss examples of this use case, the analysis of individual process bottlenecks is another simple yet effective use of kdb+ that often goes hand in hand with TCA analysis. At this point a timestamp can be tagged to any messaging system or trading engine to monitor for the publishing of stale data, which is difficult to determine when dealing with microsecond resolution and non-performing data analysis tools.

Later in the paper, the benefits of market-data source-agnostic schema are discussed. Here there are two main advantages in that such a schema will offer run-time query speed-ups and a shortened development cycle. The built-in functions kdb+ provides are very powerful, but the data must also be stored intelligently so that the queries can access it in an efficient manner.

Overall, the paper provides a snapshot of the type of TCA queries that can be run. It aims to highlight the capabilities of kdb+ to offer a best-of-breed high-performance data analysis layer. When combined with either in-house or KX’s visualization tools, it provides all the components of a TCA application to ensure that investment strategies can be executed more efficiently.

All tests performed with kdb+ V3.0 (2012.11.12).

 PDF

Author¶

[image: Colm Earley]

Colm Earley has worked on kdb+ tick-database and algorithmic-trading systems related to both the equity and FX markets. Based in New York, Colm is a senior kdb+ consultant at a leading brokerage firm, implementing a global tick database.

 Back to top

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Kx and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of FD Technologies plc.

 Made with

 Material for MkDocs

