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NASA Frontier Development Lab Space Weather
Challenge

The NASA Frontier Development Lab (FDL) is an applied artificial intelligence (AI)
research accelerator, hosted by the SETI Institute in partnership with NASA Ames
Research Centre. The programme brings commercial and private partners together
with researchers to solve challenges in the space science community using new AI
technologies.

NASA FDL 2018 focused on four areas of research – Space Resources, Exoplanets,
Space Weather and Astrobiology – each with their own separate challenges. This paper
will focus on the first of the Space Weather challenges, which aimed to forecast Global
Navigation Satellite System (GNSS) disruptions.
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The Space Weather Challenge

A GNSS is a network of satellites providing geospatial positioning with global coverage.
The most famous example is the United States’ Global Positioning System (GPS). Such
a network relies upon radio communications between satellites and ground-based
receivers, which can be subject to interruptions in the presence of extreme space
weather events.

Space weather refers to changes in radiation emitted by the Sun, leading to fluctuations
in the Earth’s ionosphere. Changes to the electron density in the ionosphere cause
fluctuations in the amplitude and phase of radio signals, referred to as phase
scintillation. Radio signals propagating between GNSS satellites and ground-based
receivers are affected by these scintillation events and can become inaccurate or even
lost.

In a society that has become dependent on GNSS services for navigation in everyday
life, it is important to know when signal disruptions might occur. Given that space
weather events occurring between the Sun and the Earth have a non-linear relationship,
physical models have struggled to predict scintillation events. One solution to making
more accurate predictions, is to use machine learning (ML) techniques.

In this paper, we examine the use of ML models to predict scintillation events, using
historical GNSS data. Initially, a Support Vector Machine (SVM) was used to recreate
the baseline model outlined in McGranaghan et al., 2018. We then implemented a
neural network model in an attempt to improve upon the baseline results and
accurately predict events as far as 24 hours ahead. Both methods used the strength of
kdb+/q to deal with time-series data and embedPy to import the necessary python
ML libraries.

The technical dependencies required for the below work are as follows:

• embedPy

• TensorFlow 16.04

• NumPy 1.14.0

• pandas 0.20.3

• Matplotlib 2.1.1

• Keras 2.0.9

• scikit_learn 0.19.1
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Data

Publicly available data was used to develop the ML models discussed below. Different
datasets describe the state of the Sun, the ionosphere and the magnetic field of the
Earth. Combining these datasets created an overall picture of atmospheric conditions
at each timestep, including when scintillation events occurred.

The first dataset was collected by the Canadian High Arctic Ionospheric Network
(CHAIN) [1] from high-latitude GNSS receivers located throughout the Canadian
Arctic. Data from multiple satellites was recorded by ground-based ionospheric
scintillation and total electron count (TEC) monitors. For the purpose of this research,
receivers from the Septentrio PolarRxS branch of the CHAIN network were used,
taking the 14 CHAIN receiver stations [2] with the most continuous data. Recorded
features for each receiver include; TEC, differential TEC (current TEC minus TEC
recorded 15 seconds previously), the scintillation index, the phase and amplitude
scintillation indices and the phase spectral slope.

Solar and geomagnetic features can be found in the second dataset, which is available
on the NASA OMNI database [3]. Features in the data include solar wind properties
(velocity, power, and the Newell and Borovsky constants), magnetic properties
(magnetic field strength, IMF and clock angle), and geomagnetic indices (AE and
SymH), along with proton fluxes and indices Kp and F10.7. Additional solar X-ray
measurements were included in the solar dataset. Such measurements are available
from the NOAA Geostationary Satellite Server [4].

The third dataset was collected by the Canadian Array for Real-time Investigations
of Magnetic Activity Network (CARISMA) [5]. CARISMA data was recorded by
magnetometers at high latitudes, and could therefore be co-located with CHAIN data.
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Pre-processing

During the initial stages of pre-processing, the following steps were taken:

CHAIN
• Only data with a lock-time of greater than 200 seconds was included to account for

‘loss of lock’ events, where receivers stop receiving satellite signals due to significant
signal irregularities. [6]

• Satellites travelling at low elevations experience ‘multi-path’ irregularities where
signals have to travel longer distances through the ionosphere and are therefore
reflected and follow multiple paths before reaching receivers. [7] To differentiate
between multi-path and scintillation irregularities, data with an elevation of greater
than 30 degrees was selected and the phase and amplitude scintillation indices (σφ
and S4 respectively) were projected to the vertical.

• Latitude and longitude for each station were also added to the data [2].

• The median value was calculated for each feature at each timestep.

Solar
• Newell and Borovsky constants were added to the dataset.

• Following the method used in McGranaghan et al. (2018), historical values recorded
15 and 30 minutes previously were included for each input parameter from the
OMNI dataset.

• All solar features were recorded at 5 minute intervals, except for the Kp and F10.7
indices which were recorded every hour. Data was back filled to match the minute
granularity of the chain dataset.

• Additional solar X-ray feature GOESx was recorded at random intervals, every few
seconds. Average measurements were selected at minute intervals.

Magnetometer
• Raw data was recorded at minute intervals.

• A chain station column was added to the final table so that data could be joined with
CHAIN data at a later stage.
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Following pre-processing, the data was persisted as a date-partitioned kdb+ database.
Scripts were written to create configuration tables, specifying the features and scaling
required for each model. The configuration tables had the below form.

table colname feature scaler
------------------------------
chain dt 0 ::
chain doy 0 ::
chain cs 0 ::
chain tec 1 ::
chain dtec 1 ::
chain SI 1 ::
chain specSlope 1 ::
..
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SVM model

A SVM was used to recreate the baseline model outlined in McGranaghan et al., 2018.

The baseline model uses the first two datasets to predict scintillation events an hour
ahead. For this method, a total of 40,000 random data points were selected from 2015,
taking data from each CHAIN receiver.

We aim to improve upon this model by:

• Considering data on a receiver-by-receiver basis, while adding localized features, to
account for the geospatial element in the data.

• Performing feature selection to reduce the dimensionality of the input features.

• Adding an exponential weighting to input features to give the most recent data the
highest importance and account for the temporal element in the data.

CHAIN and solar data
Along with the partitioned database, scripts were loaded containing utility functions,
graphing methods, and the required configuration table.

q)\l /SpaceWeather/kxdb
q)\l ../utils/utils.q
q)\l ../utils/graphics.q
q)\l ../config/configSVM.q

For the SVM method, CHAIN and solar datasets were used, with measurements
recorded at 1-minute intervals. CHAIN data was recorded for each of the 14 receiver
stations. All data from 2015 was loaded, with the solar table joined to the corresponding
rows in the CHAIN table.
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q)sdateSVM:2015.01.01
q)edateSVM:2015.12.31

q)getTabDate:{[dt;t]?[t;enlist(=;`date;dt);0b;{x!x}exec colname from configSVM where table=t]}
q)getAllDate:{[dt]

r:tabs!getTabDate[dt]each tabs:`chain`solar`goes;
t:select from(r[`chain]lj`dt xkey update match:1b from r`solar)where match;
select from(t lj`dt xkey update match:1b from r`goes)where match}

q)show completeSVM:raze getAllDate peach sdateSVM+til 1+edateSVM-sdateSVM

dt doy cs tec dtec SI specSlope s4 sigPhiVer Bz ..
-------------------------------------------------------------------------------------------------..
2015.01.01D00:00:00.000000000 1 arv 16.31073 0.285 0.014 1.77 0.04130524 0.03474961 1.05 ..
2015.01.01D00:00:00.000000000 1 chu 20.58558 0.003 0.009 1.89 0.03389442 0.03238033 1.05 ..
2015.01.01D00:00:00.000000000 1 cor 17.63518 0.072 0.013 2.06 0.04001991 0.0569824 1.05 ..
2015.01.01D00:00:00.000000000 1 edm 26.65708 -0.046 0.01 1.86 0.0443945 0.03070174 1.05 ..
2015.01.01D00:00:00.000000000 1 fsi 27.10333 -0.011 0.008 1.77 0.02914058 0.02512171 1.05 ..
2015.01.01D00:00:00.000000000 1 fsm 21.78102 -0.033 0.009 1.83 0.02766845 0.02570405 1.05 ..
2015.01.01D00:00:00.000000000 1 gil 24.6702 -0.009 0.012 2.06 0.03305384 0.07465466 1.05 ..
..

Target data
The occurrences of scintillation events are shown by sudden irregularities in a number
of features, specifically the phase scintillation index, which was projected to the vertical
throughout this work (sigPhiVer). As the baseline looks at predicting scintillation 1
hour ahead, the value of σφ 1 hour ahead of the current timestep, sigPhiVer1hr, was
used as target data for the models.

A phase scintillation event is said to be occurring when sigPhiVer has a value of
greater than 0.1 radians. The target data is therefore assigned a value of 1 (positive
class) if it has a value greater than 0.1 radians and 0 (negative class) if it has a value
less than 0.1 radians. The percentage of scintillation events present in the SVM data
are shown below.

q)dist:update pcnt:round[;.01]100*num%sum num from select num:count i by scintillation from([]scintillation:.1<completeSVM`sigPhiVer1hr);

scintillation| num pcnt
-------------| -------------
0 | 4304589 96.84
1 | 140503 3.16

Ideally, data would have been recorded for each CHAIN station, at every minute
throughout 2015. However, GNSS receivers are often prone to hardware failures,
which lead to gaps in the data.
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Figure 1: Values for the phase scintillation index projected to the vertical, recorded by each CHAIN receiver
throughout 2015.

Metrics
As only 3% of the data represented scintillation occurring, it would have been easy to
create a model which produced high accuracy. A naïve model which predicted that
scintillation never occurred would still have been correct 97% of the time. Additional
metrics were therefore needed to determine how well the models performed.

In addition to accuracy, the True Skill Statistic (TSS) has been used throughout this
paper to evaluate model performance. The TSS calculates the difference between recall
and the false positive rate and produces values ranging from -1 to 1, with 1 being the
perfect score. [8]

TSS = (TP ÷ (TP+FN)) – (FP ÷ (FP+TN))

where TP, TN, FP and FN are true positives, true negatives, false positives and false
negatives respectively.

Additional features
Scintillation events are subject to diurnal and seasonal variations, caused by the
inclination of the Earth in relation to the Sun. When either hemisphere of the Earth
is tilted towards the Sun, increased solar radiation causes greater ionization in the
upper atmosphere. This leads to higher scintillation indices and thus more scintillation
events.[9] To account for such variations, the sine and cosine local time of day and
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day of year were added to the dataset. For the baseline, only the cosine day of year
was added.

cosdoy = cos ( (2πdoy) ÷ Dtot )

sindoy = sin ( (2πdoy) ÷ Dtot )

costime = cos ( (2πdt) ÷ Ttot )

sintime = sin ( (2πdt) ÷ Ttot )

where doy is the day of year, Dtot is the number of days in the year (365 for the SVM
model, 365.25 for the neural network model), dt is the time in minutes and Ttot is the
total number of minutes in a day.

q)completeSVM:update cosdoy:cos 2*pi*doy%365 from completeSVM

Feature engineering
To account for gaps in both feature and target data, rows containing nulls were
dropped. As ML models are sensitive to inputs with large ranges, some features in the
input data were log(1+x) scaled (as defined in the SVM configuration table).

q)completeSVM@:where not any flip null completeSVM
q)completeSVM:flip(exec first scaler by colname from configSVM)@'flip

Standard scaling was then used to remove the mean and scale each feature to unit
variance. Meanwhile, target data was left unscaled and assigned a binary value, using
the 0.1 radians threshold mentioned above.

For the baseline model, a total of 40,000 random data points were selected and split
into training (80%) and testing (20%) sets. Initially, two sets of shuffled indices were
produced, covering the full set of indices in the data.

q)splitIdx:{[x;y]k:neg[n]?n:count y;p:floor x*n;(p _ k;p#k)}
q)splitIdx[.2;y]

134574 189809 424470 960362 629691 516399 721898 1091736 101292 ..
492448 121854 186677 1144240 176314 261502 853557 580623 494990 ..

These indices were then used to split X and Y data into respective train-test sets.
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q)count each`xtrn`ytrn`xtst`ytst!raze(xdata;ydata)@\:/:splitIdx[.8 .2; xdata]

xtrn| 915793
ytrn| 915793
xtst| 228949
ytst| 228949

Model
The Python libraries and functions required to run the SVM model were imported
using embedPy.

q)array: .p.import[`numpy]`:array
q)svc: .p.import[`sklearn.svm]`:SVC

To give the positive class a higher importance, a ratio of 1:50 was assigned to the
class-weight parameter in the SVM classification model.

At this stage, X and Y training sets were passed to the model. Once trained, the SVM
was used to make binary predictions for Y, given the X testing data. Predicted values
and Y test values were then used to create a confusion matrix.

A function was created so that the model could be run using different subsets of the
data.

q)trainPredSVM:{[stn;col]

sample:t neg[c]?c:count t:svmData stn;
xdata:flip stdscaler each flip(exec colname from configSVM where feature)#sample;
ydata:.1<sample col;
r:`xtrn`ytrn`xtst`ytst!raze(xdata;ydata)@\:/:splitIdx[.2;ydata];

model:svc[`kernel pykw`rbf;`C pykw .1;`gamma pykw .01;`class_weight pykw enlist[1]!enlist 50;`probability pykw 1b];
if[(::)~ .[model[`:fit];(array[value flip r`xtrn]`:T;r`ytrn);{[e] -2"Error: ",e;}];:()];

pred:model[`:predict][array[value flip r`xtst]`:T]`;
CM:cfm[r`ytst;pred];
(`model`cs`pred!(`SVM;stn;col)),metrics CM

}

Additionally, data was split into different tables for each receiver station:

q)stn:distinct completeSVM`cs
q)svmData:(`ALL,stn)!enlist[-40000?completeSVM],{select from completeSVM where cs=x}each stn
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All stations (baseline model)
To achieve the baseline result, the function was passed combined data from all 14
stations. This model correctly identified 222 scintillation events, shown in the confusion
matrix below.

q)cfm[r`ytst;pred]

0| 5621 45
1| 2112 222

These values were used to produce performance metrics.

cs accuracy errorRate precision recall specificity TSS
-------------------------------------------------------------
ALL 73.04 26.96 9.512 83.15 72.69 0.5583

Individual stations
As a comparison, data was split into respective tables for each receiver station. These
were used to individually train and test the model.

cs accuracy errorRate precision recall specificity TSS
--------------------------------------------------------------
arv 81.46 18.54 7.331 73.08 81.63 0.5471
chu 84.5 15.5 6.789 83.18 84.52 0.677
cor 72.69 27.31 6.664 84.62 72.41 0.5703
edm 97.65 2.35 21.28 94.34 97.67 0.9201
fsi 86.55 13.45 10.03 81.82 86.64 0.6845
fsm 87.84 12.16 7.949 69.83 88.1 0.5793
gil 20.91 79.09 13.65 99.7 9.618 0.09319
gjo 71.64 28.36 11.56 89.57 70.88 0.6045
mcm 86.54 13.46 13.89 93.99 86.36 0.8035
rab 84.78 15.22 8.855 82.86 84.81 0.6767
ran 76.74 23.26 7.285 77.72 76.71 0.5443
rep 39.62 60.38 7.927 97.65 36.37 0.3402
arc 79.97 20.03 9.76 89.06 79.75 0.6881
gri 99.04 0.9625 9.756 72.73 99.07 0.718

Fort McMurray station
Both previous models used data from the same station/s to train and make predictions
on the SVM. An additional method was to train the SVM using one station and make
predictions using data from the remaining stations.

In the below case, 32,000 random data points were selected as training data from the
Fort McMurray (mcm) table and 8,000 points were chosen from each of the remaining
tables to test the model. The SVM was then run as before.
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cs accuracy errorRate precision recall specificity TSS
---------------------------------------------------------------
arc 84.46 15.54 2.256 13.51 86.14 -0.003445
arv 83.95 16.05 6.031 59.85 84.35 0.442
chu 83.58 16.43 6.759 75 83.71 0.5871
cor 82.15 17.85 7.456 51.69 82.96 0.3465
edm 87.36 12.64 4.442 100 87.29 0.8729
fsi 83.75 16.25 6.74 77.31 83.85 0.6116
fsm 84.65 15.35 7.291 82.61 84.68 0.6729
gil 80.76 19.24 25.87 36.27 86.53 0.228
gjo 81.77 18.22 10.76 43.55 83.52 0.2707
gri 83.16 16.84 0.2976 36.36 83.23 0.1959
mcm 86.54 13.46 13.89 93.99 86.36 0.8035
rab 84.4 15.6 7.241 75.4 84.54 0.5994
ran 82.62 17.38 8.432 61.42 83.16 0.4458
rep 80.61 19.39 12.53 41.67 82.9 0.2457

SVM results
Plotting the TSS for all three methods allowed the performance of each model to be
compared.

Figure 2: True Skill Statistic results produced by the Support Vector Machine models (individual models
– left, Fort McMurray model – right). The combined and Fort McMurray models are plotted in black.

The SVM baseline model, which combined data from all the receiver stations, gave
an accuracy of 73.04% and a TSS of 0.56 (precision = 9.51%, recall = 83.15%). The top
plot shows how the performance of the model varied depending on which station was
used to train and test the SVM.

TSS results produced by the Fort McMurray model are shown in the right plot, with
results varying even more drastically from station to station.

From these results we can infer that scintillation events must be localized and will
therefore depend on the location of each individual receiver. In order to train a model
with higher accuracy and TSS, data must either be separated on a station-by-station
basis, or additional spatial parameters must be introduced to account for the geospatial
elements in the data.
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Until this point, the SVM trained and tested on combined/individual data had been
used to make predictions 1 hour ahead. However, it was possible to predict at any
chosen prediction time. In this paper, we look at predictions for 0.5, 1, 3, 6, 9, 12 and
24 hours ahead. Using the same model as before, random samples of 40,000 timesteps
from 2015 were selected for each station to train and test the SVM at each prediction
time.

Figure 3: True Skill Statistic results for the Support Vector Machine model, trained on combined and
individual data at multiple prediction times.

As expected, the model tends to perform better at 0.5 and 1 hour prediction times,
with results getting worse as the prediction time increases. Accuracy follows the same
trend, decreasing as prediction time increases. The Fort McMurray station gives the
highest TSS throughout, allowing the model to predict 24 hours ahead with a TSS
score of 0.61 and an accuracy of 73%.
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Figure 4: Accuracy results for the Support Vector Machine model, trained on combined and individual
data at multiple prediction times.

Feature selection
Before moving from an SVM to a neural network, dimensionality reduction was
performed on the dataset.

Dimensionality reduction is the process of reducing the number of features in a dataset,
while preserving as much information as possible. Finding a lower-dimensional
representation of the dataset can improve both the efficiency and accuracy when the
data is fed to a ML model.

A number of scikit-learn libraries were imported (using embedPy) for feature selection.
Each determined the importance of features using a different method.

PCA
Feature importance was carried out by calculating the variance of each
component. Plotting the variance allowed the minimum number of features to
be chosen, which reduced dimensionality while keeping data loss to a minimum.
It was found that the first 15 components held the most variance in the data.
PCA was carried out again, using only the first 15 components in order to
maximize the variance.
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Fisher ranking
The Fisher Score is a feature-selection algorithm used to determine the most
important features in a dataset. It assigns a score to each component, determining
the number of features that should remain in the dataset based on their score.
This was done using the python scikit-learn SelectKBest library and the
f_classif function, which determine the F-score for each component.

Extra tree classification
This method works by selecting features at random from a decision tree, in order
to increase accuracy and control over-fitting within a model. They work similarly
to random forests, but with a different data split, where for an extra trees
classification, feature splitting is chosen at random, compared to the
random-forest method of choosing the best split among a subset of features.
Important features among the dataset were scored based on the results of the
decision-tree outcomes.

Logistic regression
In ML, logistic regression is commonly used for binary classifications. Logistic
regression uses probabilities to calculate the relationship between the desired
predicted outcome and the input features from the dataset. These probabilities
can then be used to rank the importance of features in the dataset. This method
returned a list of selected features, as opposed to a list of features in descending
order of importance.

Decision tree classifier
Given features as inputs, a decision tree is used to represent the different possible
outcomes in a classification problem. The model uses branch nodes to describe
observations about the inputs and leaves to represent the classification result.
Feature importance was calculated by assessing the outcome achieved when
each feature was used as input.

Random forests
A random forest is a supervised ML algorithm, which builds a model based on
multiple random decision trees. It combines results to increase the accuracy of
the model. The split at each node is decided based on the best split in a subset
of features. Using this algorithm, feature importance can be extracted for each
component. This is done by looking at the results of each node of the decision
tree and assessing whether the features associated with each node increase the
accuracy of the overall decision tree. Following this method, a score was assigned
to each feature.

Each of the above methods produced a list of important features. Combining these
and selecting the components which had been selected multiple times produced the
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final feature list; tec, dtec, s4, SI, specSlope, sigPhiVer, AE, AE_15, AE_30, newell_30,
P, V, proton60, f107, kp and GOESx. These were used in the neural-network model,
including time-lagged columns for each.
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Neural-network model

Pre-processing
To improve performance metrics, data from 2015-2017 was used to train a
neural-network model. Going forward, only components selected in the feature
selection process were used (found in the neural-network configuration table). Data
was loaded using the same method as above.

As results showed that scintillation events are specific to the location of each station,
localized features were added to the dataset. These included the magnetometer dataset,
sindoy, sintime, cosdoy and costime. As previously stated, 365.25 is used for Dtot in
this model to account for the extra day present in a leap year.
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Figure 5: The variation in the phase scintillation index (sigPhiVer), the differential Total Electron Content
(dtec) and the X component of the Earth’s magnetic field during a scintillation event, where sigPhiVer is
greater than 0.1 radians.

When a scintillation event occurs, geomagnetic features such as x, y, z and dtec will
fluctuate drastically. It was therefore useful to give more importance to these features
by adding columns which contained their absolute values with the mean removed.

q)newval:{abs(x-avg x)}
q)completeNN:update newx:newval x,newy:newval y,newz:newval z,newdtec:newval dtec from completeNN

Feature engineering
For this model, X data was exponentially weighted to give the most recent data the
highest importance.

q)xdata:flip(reverse ema[.1]reverse@)each flip xdata

Target data was log scaled to prevent negative predictions for σφ, which is always
positive. A train-test split of 80%/20% was again used.

To overcome the small fraction of data representing scintillation events, oversampling
was used on the training set. A random sample taken from the positive class was
re-added to the training dataset, giving a final training set with 50% positive samples.

q)r:`xtrn`ytrn`xtst`ytst!raze(xdata;ydata)@\:/:splitIdx[.2;ydata]
q)positiveIdx:where yscint:.1<exp r`ytrn
q)pos:`x`y!{x[y]}[;positiveIdx]each(r`xtrn;r`ytrn)
q)sampleIdx:(nadd:(-) . sum each yscint=/:(0 1))?count pos`x
q)sample:`x`y!{x[y]}[;sampleIdx]each(pos`x;pos`y)
q)oversampled:`x`y set'(r`xtrn;r`ytrn),'(sample`x;sample`y)

Scintillation events before oversampling:

ybinary| num pcnt
-------| -------------
0 | 4325747 88.44
1 | 565260 11.56

Scintillation events after oversampling:

ybinary| num pcnt
-------| ------------
0 | 4325747 50
1 | 4325747 50
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Model
To create a neural-network model, embedPy was used to import the necessary ML
libraries.

q)sequential: .p.import[`keras.models]`:Sequential
q)dense: .p.import[`keras.layers]`:Dense
q)normalization: .p.import[`keras.layers]`:BatchNormalization
q)pylist: .p.import[`builtins]`:list

The model had 1 input layer, 4 hidden layers and 1 output layer. A normal distribution
was used as the initializer for the kernel to set the weights in each layer of the model.

The input and hidden layers have output widths of 256 nodes, along with an
Exponential Linear Unit (ELU) activation function, which gave the best model
performance. ELU was specifically chosen as it converged the loss function to zero
better than other activation functions, such as a Rectified Linear Unit (RELU).

The output layer had 1 node and a linear activation function to allow a single value
for to be returned for each timestep.

q)model:sequential[];
q)model[`:add]dense[256;`input_dim pykw 37;`kernel_initializer pykw`normal; `activation pykw`elu];
q)model[`:add]normalization[];
q)model[`:add]dense[256;`activation pykw`elu;`kernel_initializer pykw`normal];
q)model[`:add]normalization[];
q)model[`:add]dense[256;`activation pykw`elu;`kernel_initializer pykw`normal];
q)model[`:add]normalization[];
q)model[`:add]dense[256;`activation pykw`elu;`kernel_initializer pykw`normal];
q)model[`:add]normalization[];
q)model[`:add]dense[256;`activation pykw`elu;`kernel_initializer pykw`normal];
q)model[`:add]normalization[];
q)model[`:add]dense[1;`activation pykw`linear];
q)model[`:compile][`loss pykw`mean_squared_error;`optimizer pykw`adam;`metrics pykw pylist `mse`mae];

At this stage, the model was trained for 50 epochs, using batch sizes of 512 each time.
The model performed validation using 20% of the training data.

q)resNN:model[`:fit][array[value flip oversampled`x]`:T;oversampled`y;`batch_size pykw 512;`verbose pykw 0;`epochs pykw 50;`validation_split pykw .2]

Once trained, the model was used to make predictions 1 hour ahead.

q)predNN:raze(model[`:predict]array[value flip r`xtst]`:T)``

Outputs were assigned binary values, using the 0.1 radians threshold, and then
compared to the y test values selected previously.

ypred| 0.03101 0.02524 0.02811 0.7762 0.02906 0.02075 0.02273 0.02361 0.06351 ..
ybin | 0 0 0 1 0 0 0 0 0 ..
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Neural network results
The model was trained and tested using combined data from the Fort Churchill (chu),
Fort McMurray (mcm) and Fort Simpson (fsi) stations, each co-located magnetometer
data. The true and false positives and negatives predicted by the model were
represented in a confusion matrix.

Figure 6: Confusion matrix produced by the neural network model at 1 hour prediction time. Scintillation
represents the positive class.

The model correctly identified 134,586 scintillation events at 1 hour prediction time.
From these results, performance metrics were calculated to allow comparison between
the SVM and neural network.

model cs accuracy errorRate precision recall specificity TSS
------------------------------------------------------------------
SVM ALL 73.04 26.96 9.512 83.15 72.69 0.5583
NN ALL 98.41 1.591 91.49 95.09 98.84 0.9393

By introducing geospatial features and exponentially weighting input data to account
for the spatial and temporal elements in the data, we managed to increase accuracy
in the combined model by over 25% and TSS by 0.38. Precision and recall have also
increase to greater than 90%, a large improvement on the baseline model.

22

NASA Frontier Development Lab Space Weather Challenge kx



As before, the model was also run separately for each station.

model cs accuracy errorRate precision recall specificity TSS
---------------------------------------------------------------
SVM chu 84.5 15.5 6.789 83.18 84.52 0.677
NN chu 98.63 1.375 48.26 78.49 98.89 0.7739
SVM fsi 86.55 13.45 10.03 81.82 86.64 0.6845
NN fsi 98.89 1.105 51.58 71.17 99.22 0.7039
SVM mcm 86.54 13.46 13.89 93.99 86.36 0.8035
NN mcm 99.02 0.9849 65.32 78.01 99.35 0.7736

Accuracy for all three models has increased to over 98%, while TSS has increased to
values above 0.7. This is an impressive result given that 3 years of data was used to
train/test each of the neural networks, compared to the 40,000 data points from 2015
used in the SVM model.

Another means of determining how well the models performed was to plot true and
predicted values together. In the below plot, the first 300 values for at 1-hour prediction
time have been plotted for the combined model. This plot shows how well predicted
values compare with the test set.

Figure 7: True (blue) and predicted values (orange) for the phase scintillation index at 1 hour prediction
time (sigPhiVer1hr) produced by the neural network model using the combined dataset.

The performance of the model is also apparent in the Receiver Operating
Characteristics (ROC) curve plot, which compares the True Positive Rate (Sensitivity)
and False Positive Rate (1-Specificity). This produces an area under the curve of 0.9972.
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Figure 8: Receiver Operating Characteristic curve for 1-hour prediction values produced in the neural
network model using combined data.

Similarly to the SVM model, the neural network method was used to predict at a range
of prediction times, from 0.5-24 hours ahead.

Figure 9: True Skill Statistic results for the neural network model, predicting 30 minutes – 24 hours ahead
for the combined (ALL), Fort Churchill (chu), Fort Simpson (fsi) and Fort McMurray (mcm) models.

Unlike the SVM model, predictions made using the neural network model produced
high values for TSS regardless of prediction time, with all values sitting above 0.67.
The combined model produced the highest TSS throughout, with a value of 0.94.

For prediction time 24 hours, TSS results have increased by an average of 0.39 in
comparison to the SVM model, with all values now sitting above 0.73. This is impressive
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compared to the baseline model where results became less reliable as the prediction
time increased.

Figure 10: Accuracy results for the neural network model, predicting 30 minutes – 24 hours ahead for the
combined (ALL), Fort Churchill (chu), Fort Simpson (fsi) and Fort McMurray (mcm) models.

The accuracy results for each of the neural-network models were also improved. Each
model produces an accuracy of greater than 98% regardless of the prediction time.
This is a vast improvement on the baseline model.

As future work, it could be beneficial to try and find the maximum prediction time
for each dataset using the neural-network model. It would also be interesting to see
how results compared if null features for stations with sparse data were interpolated,
as opposed to dropped. This would allow the neural network to be run for more
stations.
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Conclusions

In a society that is increasingly dependent on GNSS technology, it is important to be
able to predict signal disruptions accurately. Previous models did not produce reliable
results, as they struggled to account for the non-linear nature of Sun-Earth interactions.
This paper discussed how to harness the power of kdb+ and embedPy, to train
machine-learning models and predict scintillations events.

Data was pre-processed and scaled using kdb+. The support vector machine baseline
model was then built, trained and tested using embedPy. Results produced by this
model were improved upon by separating data on a receiver-by-receiver basis, showing
that scintillation events are localized and, therefore, dependent on the location of each
CHAIN receiver station.

Feature selection allowed the dimensionality of the dataset to be reduced before adding
spatial features, which accounted for the geospatial element of the Sun-Earth
interactions. Additionally, adding an exponentially moving window to the input data
helped to account for the temporal element in the data. Oversampling was also used
in the training set to make it easier to train models to predict when scintillation events
were occurring.

The neural network method vastly improved results compared to the baseline model.
Using this model allowed data from 2015-2017 to be used, compared to the baseline
model which used 40,000 data points from 2015. The combined dataset for 1-hour
prediction produced an increase in accuracy and total skill score of over 25% and 0.38
respectively. Predicting at 0.5-24 hour prediction times for the combined dataset, along
with the Fort Churchill, Simpson and McMurray stations, also improved on the baseline
results. Predictions produced high values for TSS regardless of prediction time, with
all values sitting above 0.67. The combined model produced the highest TSS results
with a value of 0.94 throughout.

For 24-hour prediction, both accuracy and TSS results increased by an average of 27%
and 0.39 respectively. We were therefore able to create a machine learning model,
which reliably predicts phase scintillation events as far as 24 hours ahead.
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Code
The code presented in this paper is available on GitHub at kxcontrib/space-weather6.
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