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Signal processing and q

Signal processing is the analysis, interpretation and manipulation of signals to reveal
important information. Signals of interest include human speech, seismic waves, images
of faces or handwriting, brainwaves, radar, traffic counts and many others. This processing
reveals information in a signal that can be obscured by non-useful information, commonly
called ‘noise’ . This noise can be due to the stochastic[1] nature of signals and/or
interference from other signals. Traditionally, signal processing has been performed by
either an analog process, through the use of a series of electronic circuits, or through the
use of dedicated hardware solutions, such as SIP (Systems In Package) or SoC (Systems
on a Chip).

The use of Internet of Things[2] (IoT) devices to capture signals is driving the trend
towards software-based signal-processing solutions. Software-based solutions are not
only cheaper and more widely accessible than their hardware alternatives, but their highly
configurable nature is better suited to the modular aspect of IoT sensor setups. The growth
of IoT and software-based signal processing has resulted in increased availability of
cheaply-processed signal data, enabling more data-driven decision making, particularly
in the manufacturing sector [1].

Currently popular software implementations of digital signal-processing techniques can
be found in the open source-source libraries of Python (e.g., SciPy, NumPy, PyPlot) and
C++ (e.g., SlgPack, Aquila, Liquid-DSP). The convenience of these libraries is offset by
the lack of a robust, high-throughput data-capture system, such as kdb+ tick. While it is
possible to integrate a kdb+ process with Python or C++, and utilize these
signal-processing routines on a kdb+ dataset, it is entirely possible to implement them
natively within q.

This whitepaper will explore how statistical signal-processing operations (those which
assume that signals are stochastic), can be implemented natively within q to remove
noise, extract useful information, and quickly identify anomalies. This integration allows
for q/kdb+ to be used as a single platform for the capture, processing, analysis and storage
of large volumes of sensor data.

The technical specifications for the machine used to perform the computations described
in this paper are as follows:

• CPU: Intel® Core™i7 Quad Core Processor i7-7700 (3.6GHz) 8MB Cache

• RAM: 16GB Corsair 2133MHz SODIMM DDR4 (1 x 16GB)
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• OS: Windows 10 64-bit

• kdb+ 3.5 2017.10.11
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Basic steps for signal processing

For the purpose of this paper, signal processing is composed of the following steps:

1. Data Capture

2. Spectral Analysis

3. Smoothing

4. Anomaly Detection

This paper will focus on the last three steps listed above, as the first topic of data capture
has already been covered extensively in previous Kx whitepapers, including

• Kdb+tick profiling for throughput optimization1,

• Disaster recovery for kdb+tick2

• Query Routing: a kdb+ framework for a scalable load-balanced3

Moreover, the analysis techniques presented will make use of the following sensor data
set, collected by the University of California Irvine, which contains the total power load
for a single household over a 4 year period, to a resolution of 1 minute, as illustrated in
Figure 1 below.

1. http://code.kx.com/q/wp/kdbtick_profiling_for_throughput_optimization.pdf

2. http://code.kx.com/q/wp/disaster-recovery/

3. http://code.kx.com/q/wp/query-routing/

5

Signal processing and q kx

http://code.kx.com/q/wp/kdbtick_profiling_for_throughput_optimization.pdf
http://code.kx.com/q/wp/disaster-recovery/
http://code.kx.com/q/wp/query-routing/


Figure 1: The load data of a single household, in 1-minute increments, from January 2007 to September 2010
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Spectral analysis

To understand better the nature of the processing that will be performed on this signal,
it will be useful to cover an important signal/wave concept. A fundamental property of
any wave (and hence signal) is that of superpositioning[3], which is the combining of
different signals (of the same or different frequency), to create a new wave with different
amplitude and/or frequency. If simple signals can be combined to make a more complex
signal, any complicated signal can be treated as the combination of more fundamental,
simpler signals. Spectral analysis is a broad term for the family of transformations that
‘decompose’ a signal from the time domain to the frequency domain[4], revealing these
fundamental components that make up a more complex signal.

This decomposition is represented as a series of complex[5] vectors, associated with a
frequency ‘bin’ , whose absolute value is representative of the relative strength of that
frequency within the original signal. This is a powerful tool that allows for insight to be
gained on the periodic nature of the signal, to troubleshoot the sensor in question, and
to guide the subsequent transformations as part of the signal processing.

In general, some of the basic rules to keep in mind when using the frequency
decomposition of a signal are:

• Sharp distinct lines indicate the presence of a strong periodic nature;

• Wide peaks indicate there is a periodic nature, and possibly some spectral leakage
(which won’t be fully discussed in this paper);

• An overall trend in the frequency distribution indicates aperiodic (and hence of an
infinite period) behavior is present.

Consider the following artificial signal in Figure 2, which is a combination of a 10Hz and
20Hz signal together with a constant background Gaussian noise:

x:(2*pi*(1%2048)) * til 2048;
y:(5 * sin (20*x))+(5 * sin (10 * x)) + `float$({first 1?15.0} each x);
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Figure 2: An artificial, noisy signal

This time-series shows a clear periodic nature, but the details are hard to discern from
visual inspection. The following graph, Figure 3, shows the frequency distribution of this
signal, produced through the application of an un-windowed Fourier Transform, a
technique that will be covered in detail below.
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\d .signal
mult:{[vec1;vec2]
// Performs the dot product of two vectors
realOut:((vec1 0) * vec2 0) - ((vec1 1) * vec2 1);
imagOut:((vec1 1) * vec2 0) + ((vec1 0) * vec2 1);
(realOut;imagOut)};

division:{[vec1;vec2]

denom:1%((vec1 1) xexp 2) + ((vec2 1) xexp 2);
mul:mult[vec1 0;vec1 1;vec2 0;neg vec2 1];
realOut:(mul 0)*denom;
imagOut:(mul 1)*denom;
(realOut;imagOut)};

conj:{[vec]
(vec 0;neg vec 1)};

mag:{[vec]
sqrvec:vec xexp 2;
sqrt (sqrvec 0)+sqrvec 1};

\d .

q).signal.mult[5 -3;9 2]
51 -17
q).signal.mult[(5 2 1;-3 -8 10);(9 8 -4;2 3 6)]
51 40 -64 / Reals
-17 -58 -34 / Imaginary

Fast Fourier Transform
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Figure 3: The frequency distribution of the simulated signal shown in Figure 2

The distinct sharp peaks and a low level random ‘static’ in Figure 3 demonstrate the
existence of both period trends and some background noise within the signal. Considering
that the signal in Figure 2 was to be made up of two different frequencies, why are there
clearly three different frequencies (i.e., 10, 20 and 50Hz) present? This is because the
original signal contained a low-level 50Hz signal, one that might be observed if a sensor
wasn’t correctly shielded from 50Hz main power. This leakage could influence any
decisions made from this signal, and may not have been immediately detected without
spectral analysis.

In general, spectral analysis is used to provide information to make a better decision on
how to process a signal. In the case above, an analyst may decide to implement a high-pass
filter to reduce the 50Hz noise, and then implement a moving-mean (or Finite Impulse)
filter to reduce the noise.

In the following chapters, an industry-standard technique for spectral analysis, the radix-2
Fast Fourier Transform, is implemented natively within q. This implementation is reliant
on the introduction of a framework for complex numbers within q.
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Complex numbers and q
All mainstream spectral analysis methods are performed in a complex vector space, due
to the increase in computational speed this produces, and the ease at which complex
signals (such as RADAR) are handled in a complex vector space. While complex numbers
are not natively supported in q, it is relatively straightforward to create a valid complex
vector space by representing any complex number as a list of reals and imaginary parts.
Consider the following complex number, composed of the real and imaginary parts, 5
and 3, respectively

z:(5;3)

This means that a complex number series can be represented as

z:(5 7 12;3 -9 2)

By defining complex numbers as pairs of lists, subtraction and addition can be
implemented with the normal + and - operators in q. All that remains to construct a
complex vector space in q, is to create operators for complex multiplication, division,
conjugation and absolute value.

\d .signal
mult:{[vec1;vec2]
// Performs the dot product of two vectors
realOut:((vec1 0) * vec2 0) - (vec1 1) * vec2 1;
imagOut:((vec1 1) * vec2 0) + (vec1 0) * vec2 1;
(realOut;imagOut)};

division:{[vec1;vec2]
denom:1%((vec1 1) xexp 2) + ((vec2 1) xexp 2);
mul:mult[vec1 0;(vec1 1);(vec2 0);neg vec2 1];
realOut:(mul 0)*denom;
imagOut:(mul 1)*denom;
(realOut;imagOut)};

conj:{[vec](vec 0;neg vec 1)};

mag:{[vec]
sqrvec:vec xexp 2;
sqrt (sqrvec 0)+sqrvec 1};

\d .
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q).signal.mult[5 -3;9 2]
51 -17
q).signal.mult[(5 2 1;-3 -8 10);(9 8 -4;2 3 6)]
51 40 -64 / Reals
-17 -58 -34 / Imaginary

Fast Fourier Transform
The Fourier Transform is a standard transformation to decompose a real or complex
signal into its frequency distribution[6]. The Fast Fourier Transform (FFT) is a family of
algorithms that allow for the Fourier transform to be computed in an efficient manner,
by utilizing symmetries within the computation and removing redundant calculations.
This reduces the complexity of the algorithm from n² to around n × log(n), which scales
impressively for large samples.

Traditionally the Fast Fourier Transform and its family of transforms (such as Bluestein
Z-Chirp or Rader’s), are often packaged up in libraries for languages such as Python or
Matlab, or as external libraries such as FFTW (Fastest Fourier Transform in the West).
However, with the creation of a complex number structure in q, this family of
transformations can be written natively. This reduces dependencies on external libraries
and allows for a reduced development time.

The following example shows how the Radix-2 FFT (specifically a Decimation-In-Time,
Bit-Reversed Input Radix-2 algorithm) can be implemented in q. The function, fftrad2,
takes a complex vector of length N (a real signal would have 0s for the imaginary part)
and produces a complex vector of length N, representing the frequency decomposition
of the signal.
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\d .signal
// Global Definitions
PI:acos -1; / pi ;
BR:2 sv reverse 2 vs til 256; / Reversed bits in bytes 00-FF
P2:1,prds[7#2],1; / Powers of 2 with outer guard
P256:prds 7#256; / Powers of 256

bitreversal:{[indices]
// Applies a bitwise reversal for a list of indices
ct:ceiling 2 xlog last indices; / Number of significant bits (assumes sorted)
bt:BR 256 vs indices; / Breakup into bytes and reverse bits
dv:P2[8-ct mod 8]; / Divisor to shift leading bits down
bt[0]:bt[0] div dv; / Shift leading bits
sum bt*count[bt]#1,P256 div dv / Reassemble bytes back to integer
};

fftrad2:{[vec]
// This performs a FFT for samples of power 2 size
// First, define some constants
n:count vec 0;
n2:n div 2;
indexOrig:til n;
// Twiddle Factors - precomputed the complex values over the
//discrete angles, using Euler formula
angles:{[n;x]2*PI*x%n}[n;] til n2;
.const.twiddle:(cos angles;neg sin angles);
// Bit-reversed the vector and define it into a namespace so lambdas can access it
ind:bitreversal[indexOrig];
.res.vec:`float$vec . (0 1;ind);
// Precomputing the indices required to immplement each temporal phase of the DIT

// Number of signals
signalcount:`int$ {2 xexp x} 1+ til `int$2 xlog n;
// Number of points in each signal
signalpoints:reverse signalcount;
// Define an initial count, this can be used as a
// backbone to get the even and odd indices by adjustment
initial:{[n2;x]2*x xbar til n2}[n2;] peach signalcount div 2;
evens:{[n2;x]x + n2#til n2 div count distinct x}[n2;] peach initial;
odds:evens + signalcount div 2;
twiddleIndices:{[n;n2;x]n2#(0.5*x) * til n div x}[n;n2;] peach signalpoints;

// Butterfly Implementation
bflyComp:{[bfInd]

tmp:mult[.res.vec[;bfInd 1];.const.twiddle[;bfInd 2]];
.[`.res.vec;(0 1;bfInd 1);:;.res.vec[;bfInd 0]-tmp];
.[`.res.vec;(0 1;bfInd 0);+;tmp]};

bflyComp each flip `int$(evens;odds;twiddleIndices);
.res.vec};

\d .

Below is a demonstration of how .signal.fftrad2 operates on an example signal shown
in Table 1.

Table 1: A 1Hz sine wave, sampled at 4Hz Time (s) 0 0.25 0.5 0.75 Amplitude 0 1 0 -1
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// Adjusting .signal.fftrad2, to print intermediate results
/ Line 31, .res.vec:0N!`float$vec . (0 1;ind);
/ Line 51, .[`.res.vec;(0 1;bfInd 0);+;tmp];0N!.res.vec};

q).signal.fftrad2[(0 1 0 -1;4#0)]
(0 0 1 -1f;0 0 0 0f) // Bitwise reversal
(0 0 0 2f;0 0 0 0f) // Butterfly step 1
(0 1.224647e-016 0 -1.224647e-016;0 -2 0 2f) // Butterfly step 2
0 1.224647e-016 0 -1.224647e-016 // Result is printed
0 -2 0 2

Sampling frequency and length

The application of an FFT produces the sequence of complex numbers that are associated
with the magnitudes of the frequencies that compose a signal, but not the frequencies
themselves. The frequencies that are captured by a spectral analysis are a function of the
sampling that was applied to the dataset, and will have the following characteristics,

• The number of distinct frequencies (often called frequency bins) is equal to

• The maximum frequency that can be captured by a Fourier Transform is equal to half
the sampling frequency[7]

• Both positive and negative frequencies will result from the transform and will be
mirrored about 0Hz

Considering the above characteristics, the frequencies of a spectral analysis are a function
of only the number of samples and the sampling frequency. The following function can
be used to produce the frequencies of a spectral analysis from the number of samples and
sampling frequency, and hence is used to define the x axis.

q)xAxis:{[Ns;fs] (neg fs*0.5)+(fs%Ns-1)*til Ns}

This function has been applied below to compute the associated frequencies for the sample
signal given in Table 1.
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q)xAxis[4;4] //Calculating the frequency bins for 16 samples, measured at 20Hz
-2 -0.6666667 0.6666667 2

q)transform:.signal.fftrad2[(0 1 0 -1;4#0)]
q)flip `Frequency`Real`Imaginary!(xAxis[4;4];transform 0;transform 1)
Frequency Real Imaginary
-----------------------------------
-2 0 0
-0.6666667 1.224647e-016 -2
0.6666667 0 0
2 -1.224647e-016 2

Windowing the signal

There is an important assumption that is carried forward from the continuous Fourier
Transform to the discrete version, that the data set being operated on is infinitely large.
Obviously, this cannot be true for a discrete transform, but it is simulated by operating
with a circular topology, i.e., by assuming that the end of the sample connects to the start.
This means that there can be discontinuities in the data if the sampled dataset doesn’t
capture a full period (resulting in different start-end values). These discontinuities result
in a phenomen known as a ‘spectral leakage’ [8], where results in the frequency domain
are spread over adjacent frequency bins

The solution to this problem is to window the signal, which adjusts the overall amplitude
of the signal to limit the discontinuities. In general, this is achieved by weighting the
signal towards 0 at the start and end of the sampling. For this paper, the commonly used
Hanning Window (which finds a middle ground between many different windowing
functions), shown in Figure 4, will be applied.

Figure 4: The shape of a Hann Window, which is applied to an input signal to tamp down the signal so that
there is greater continuity under the transform. Distributed under CC Public Domain
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In the following example, the Hanning weightings are computed and then applied to a
complex vector.

// The window function will produce a series of weightings
// for a sequence of length nr,
// which would be the count of the complex series
q)window:{[n] {[nr;x](sin(x*acos -1)%nr-1) xexp 2} [n;] each til n}

q)vec:(1 2 1 4;0 2 1 4)
q)n:count first vec
// Applying the window with an in place amendment
q)vec*:(window n;window n);
0 1.5 0.75 5.999039e-032
0 1.5 0.75 5.999039e-032

The Fourier Transformation for a real-valued signal

In general, the final step to getting the frequency distribution from the transformed vector
series is to get the normalized magnitude of the complex result. The normalized magnitude
is computed by taking the absolute value of the real and imaginary components, divided
by the number of samples. However, for a real-valued input, where there is symmetry
about the central axis[9], the dataset can be halved.

Putting it all together
Below, a single function, spectral, is defined which performs a spectral analysis (through
a Fourier Transform) on a complex vector. This function windows the vector, performs
a FFT and scale the results appropriately.
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spectral:{[vec;fs]

// Get the length of the series, ensure it is a power of 2
// If not, we should abort operation and output a reason
nr:count first vec;
if[not 0f =(2 xlog nr) mod 1;0N! "The input vector is not a power of 2";`error];

// Window the functions, using the Hanning window
wndFactor:{[n] {[nr;x](sin(x*acos -1)%nr-1) xexp 2} [n;] each til n};
vec*:(wndFactor nr;wndFactor nr);

// Compute the fft and get the absolute value of the result
fftRes:.signal.fftrad2 vec;
mag:.signal.mag fftRes;

// Scale an x axis
xAxis:{[Ns;fs] (neg fs*0.5)+(fs%Ns-1)*til Ns}[nr;fs];

// Table these results
([]freq:xAxis;magnitude:mag%nr)
};

Let’s apply this to the dataset shown in Figure 1, from the University of California, loading
it from the .txt file and then filling in null values to ensure a constant sampling frequency.

q)household:select Time:Date+Time,Power:fills Global_active_power from
("DTF "; enlist ";") 0:`:household_power_consumption.txt

This data is then sampled at 2-hour intervals, ensuring the sample size is a power of 2,
before performing a spectral analysis on it with the spectral function.

q)household2hour:select from household where 0=(i mod 120)
q)n:count household2hour
17294
q)cn:`int$2 xexp (count 2 vs n)-1
16384
q)spec:spectral[(cn sublist household2hour`Power;cn#0f);1%120*60]
q)\t spectral[(cn sublist household2hour`Power;cn#0f);1%120*60]
6
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Figure 5: The frequency distribution of the Household Power load, excluding the first result to demonstrate the
Hermitian symmetry

The above FFT was formed on 16,384 points and was computed in 6ms. In this case, the
frequencies are so small that they are difficult to make inferences from. (It’s hard to intuit
what a frequency of 1 μHz corresponds to). A nice solution is to remove the symmetry
present (taking only the first half), then convert from Frequency (Hz) to Period (hours).

specReal:select period:neg (1%freq)%3600, magnitude from (cn div 2) sublist spec
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Figure 6: The frequency distribution of the Household Power dataset with the symmetry removed

It can be seen from Figure 6, that the first value is nearly an order of magnitude larger
than any other, suggesting that there is a strong high-frequency signal that hasn’t been
captured. The likely culprit from this would be interference from a 50Hz signal due to
mains power, and the existence of others is a strong possibility. After the large initial
value, there are distinct 2, 3, 6, 10 and (just below) 12-hour cycles, which could be
explained as part of the ebb and flow of day-to-day life, coming home from school and
work. This result, with strong sharp lines, definitively shows the existence of periodic
trends, along with a constant background noise. This knowledge will be used to further
process the signal and obtain more useful information on long-term trends.
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Smoothing

A simple method to see the longer-term trends and remove the daily noise is to build a
low-pass filter and reduce the frequencies below a specific threshold. A simple low-pass
filter can be constructed as a windowed moving average, which is trivial in q with its
inbuilt function mavg. All that is needed is to ensure the moving average is centered on
the given result, which can be achieved by constructing a function that uses rotate to
shift the input lists to appropriately center the result. The following implements an N-point
centered moving average on a list.

\d .signal
movAvg:{[list;N]
$[0=N mod 2;
(floor N%2) rotate 2 mavg (N mavg list);
(floor N%2) rotate N mavg list]};

\d .

From the spectral analysis of the Household Power dataset (see Figure 6), it can see that
the most dominant signals have a period of at most 24 hours. Therefore, this is a good
value for the window size for an initial smoothing of the Household Power dataset[10].

q)householdMA:select Time, Power: .signal.movAvg[Power;24*60] from household
q)\t householdMA:select Time, Power: .signal.movAvg[Power;24*60] from household
109

The following Figure 7 shows the result of the application of a 1,440-point moving average
on the raw Household Power data set (see Figure 1), containing over 2 million data points
(achieved in just over 100ms).
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Figure 7: The smoothed dataset: note the now clearly visible yearly trend

Comparison of the smoothed data (Figure 7) and the raw data (Figure 1) demonstrates
the clarity achieved by applying a simple moving average to smooth a dataset. This simple
process has removed a significant amount of noise and revealed the existence of a
year-long, periodic trend.

Application of an FFT to this smoothed dataset can reveal trends which would have been
difficult to obtain from the raw data. For this, a lower sampling rate (of 6-hour intervals)
will be used to assist in revealing long-term trends[11].
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Figure 8: The FFT of the smoothed dataset

From the figure above, it can be seen that whilst there is still some high-frequency noise,
there are definite 6- and 12-hour trends, with a definite 2.5-day trend in the power usage.
Despite Figure 7 showing a clear year-long periodic trend, this isn’t present in the
Frequency distribution in Figure 8, probably because the dataset simply does not cover
enough years for that trend of that length to be present in a simple spectral analysis.

It can be concluded from the results in this chapter that there are bi-weekly, weekly and
yearly periodic trends hidden within the raw data, as well as the 5, 6, 12 and 24-hour
trends obtained from earlier work. In the context of household power consumption, these
results are not unexpected.
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Anomaly detection

In this paper, anomaly detection is considered the last step of signal processing, but it
can be implemented independently of any other signal processing, serving as an early
warning indicator of deviations from expected behavior. Assuming the sensors are
behaving stochastically, outliers can be identified by the level of deviation they are
experiencing from the expected behavior, i.e., using the mean and standard deviation.
Ideally, these deviations should be measured from the local behavior in the signal rather
than from the whole series, which allows for periodic behavior to be accounted for. This
can be achieved with a windowed moving average (from ‘Smoothing’ above) and a
windowed moving standard deviation.

\d .signal
movDev:{[list;N]
$[0=N mod 2;
(floor N%2) rotate 2 mdev N mavg list;
(floor N%2) rotate N mdev list]};

\d .

Assuming the randomness in the signal is Gaussian in nature, an anomaly is present if
the current value is more than a sigma-multiple of the standard deviation away from the
moving mean. This can be determined effectively within q by using a vector conditional
evaluation in a qSQL statement, comparing the actual value with maximum/minimums
created with the moving average and deviation. Below this technique is demonstrated
on the Household Power dataset, with a 5-point moving window and a sigma level of 2.

q)sigma:2;
q)outliers:update outlier:?[
(Power > movAvg[Power;5] + fills sigma * movDev[Power;5]) |
(Power < movAvg[Power;5] - fills sigma * movDev[Power;5]);
Power;
0n] from household;

q)\t update outliers:update outlier:?[
(Power > movAvg[Power;5] + fills sigma * movDev[Power;5]) |
(Power < movAvg[Power;5] - fills sigma * movDev[Power;5]);
Power;
0n] from household;

380

It takes approximately 380ms to perform this detection routine on over 2 million data
points, and the results can be seen below in Figure 9. Of the approximately 2 million data
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points, 5000 were detected to be anomalous, interestingly, setting the sigma level to over
3 drops the anomalies to 0, perhaps due to the Gaussian distribution within the dataset.

Figure 9: The results of an anomaly detection on the Household Power dataset
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Conclusion

In this paper, we have shown the ease with which simple, fast signal processing can be
implemented natively within q. All that was required was a basic framework to support
complex-number operations to allow for complex-field mathematics within q. With this
framework, signal-processing algorithms can easily be implemented natively in q, reducing
dependencies on external libraries, and allowing for faster and interactive development.
This complex framework was essential to the successful implementation of a Fast Fourier
Transform (FFT), a fundamental operation in the processing of many signals

The collection of signal-processing functions that were shown in this paper were able
rapidly to process the grid-load dataset obtained from the University of California, Irvine.
An FFT was implemented on a sample of 16,000 data points in around 6ms and guided
from that spectral analysis, a simple low-pass filter was implemented directly in the time
domain, on over 2 million data points, in around 100ms. The resulting data had a clear
reduction in noise and revealed the longer-term trends present in the signal. It has also
been shown that a simple and robust anomaly-detection routine can be implemented in
q, allowing anomalies to be detected in large datasets very rapidly. These smoothing and
anomaly detection routines could easily be integrated as real-time operations with other
data capture and processing routines.

Clearly, native applications of signal processing, which historically have been the realm
of libraries accessed through Python or C++, can be natively integrated into q/kdb+ data
systems. This allows for q/kdb+ to be used as a platform for the capture, processing,
storage and querying of sensors based signal information.
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Appendix

Data sources
The primary dataset, containing sensor readouts for a single households total power load,
that was introduced and then transformed throughout this paper, can be found at uci.edu5.

The code presented in this paper is available at github.com/kxcontrib/q-signals6.

Python FFT comparison
In the following, a comparison between two alternative implementations of FFT will be
performed to benchmark the native q-based algorithm. Comparisons will be made to a
similar algorithm used in \d .signal.

mult:{[vec1;vec2]
// Performs the dot product of two vectors
realOut:((vec1 0) * vec2 0) - ((vec1 1) * vec2 1);
imagOut:((vec1 1) * vec2 0) + ((vec1 0) * vec2 1);
(realOut;imagOut)};

division:{[vec1;vec2]
denom:1%((vec1 1) xexp 2) + ((vec2 1) xexp 2);
mul:mult[vec1 0;vec1 1;vec2 0;neg vec2 1];
realOut:(mul 0)*denom;
imagOut:(mul 1)*denom;
(realOut;imagOut)};

conj:{[vec](vec 0;neg vec 1)};

mag:{[vec]
sqrvec:vec xexp 2;
sqrt (sqrvec 0)+sqrvec 1};

\d .

5. https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

6. https://github.com/kxcontrib/q-signals
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q).signal.mult[5 -3;9 2]
51 -1
q).signal.mult[(5 2 1;-3 -8 10);(9 8 -4;2 3 6)]
51 40 -64 / Reals
-17 -58 -34 / Imaginary

Fast Fourier Transform, written natively in Python 3.6, and also against a well refined,
and highly-optimized C based library. The library in question will be the NumPy7 library,
called via the q fusion with Python – embedPy (details on setting up this environment
are available from Machine Learning section8 on code.kx.com.

In order to get an accurate comparison, each method should be tested on a sufficiently
large dataset, the largest 2N subset of the previously used Household Power dataset is
suitable for this purpose.

//Get the largest possible 2N dataset size
q)n:count household;
q)nr:`int$2 xexp (count 2 vs n)-1
1048576
q)comparison:select real:Power, imag:nr#0f from nr#household
q)\t .fft.fftrad2[(comparison`real;comparison`imag)]
1020
q)save `comparison.csv

So the q algorithm can determine the Fourier Transform of a million point dataset in
about a second, a nice whole number to gauge the comparative performance.

In Python, the native complex-math definitions field can be used to build a similar radix-2
FFT Decimation in Time routine as was implemented above, from a publicly-available
GitHub repo github.com/peterhinch9.

7. http://www.numpy.org/

8. http://code.kx.com/q/ml/embedpy/

9. https://github.com/peterhinch/micropython-fft/blob/master/algorithms.py
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import pandas as pd
import numpy as np
import time
import math
from cmath import exp, pi

data = pd.read_csv('c:/q/w64/comparison.csv')
fftinput = data.real.values + 1j * data.imag.values
def ffft(nums, forward=True, scale=False):

n = len(nums)
m = int(math.log2(n))
#n= 2**m #Calculate the number of points
#Do the bit reversal
i2 = n >> 1
j = 0
for i in range(n-1):

if i<j: nums[i], nums[j] = nums[j], nums[i]
k = i2
while (k <= j):

j -= k
k >>= 1

j+=k
#Compute the FFT
c = 0j-1
l2 = 1
for l in range(m):

l1 = l2
l2 <<= 1
u = 0j+1
for j in range(l1):

for i in range(j, n, l2):
i1 = i+l1
t1 = u*nums[i1]
nums[i1] = nums[i] - t1
nums[i] += t1

u *= c
ci = math.sqrt((1.0 - c.real) / 2.0) # Generate complex roots of unity
if forward: ci=-ci # for forward transform
cr = math.sqrt((1.0 + c.real) / 2.0) # phi = -pi/2 -pi/4 -pi/8...
c = cr + ci*1j#complex(cr,ci)

# Scaling for forward transform
if (scale and forward):

for i in range(n):
nums[i] /= n

return nums

t0 = time.time()
ffft(fftinput)
t1 = time.time()
print(t1 - t0)
8.336997509002686
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From the above computations, it can be seen that the natively-written Python FFT
computed the million-point transformation in 8.3 seconds.

And finally using embedPy to access the C-backed NumPy library to perform the FFT,
which will likely not use a radix-2 algorithm, but a mixed-radix implementation that
allows for multi-threading (which the in-place Decimation-In-Time algorithm
fundamentally cannot do).

p)import numpy as np;
p)import pandas as pd;
p)import time;
p)data = pd.read\_csv('comparison.csv');

// Convert to a complex pair

p)fftinput = data.real.values + 1j * data.imag.values;
p)t0 = time.time();
p)np.abs(np.fft.fft (fftinput));
p)t1 = time.time();
p)print (t1 - t0)
0.04644131660461426
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Notes

1. A stochastic process is one where at least part of the process is defined by random
variables. It can be analyzed but not predicted with certainty, although Autoregressive
based models can achieve a modest prediction capability.

2. Internet of Things is the networking and data sharing between devices with embedded
electronics, sensors, software and even actuators. Common household examples
include devices such as Fitbits, Amazon Echo’s and Wi-Fi connected security systems.

3. An everyday example of the superpositioning principle in action is through
Noise-Cancelling headphones, which measure the outside soundwave, and then
produce an exact opposite wave internally, that nullifies the outside noise.

4. The ‘domain’ is the variable on which a signal is changing. Humans naturally tend
to consider changes in a time-domain, such as how a singer’s loudness varies during
a song. In this case, the frequency-domain analysis would be to consider how often
the singer hit particular notes.

5. Here complex is used in a mathematical sense, each vector contains a real and
imaginary part.

6. Technically, a Fourier Transformation decomposes a signal into complex exponentials
(called ‘cissoids’ ).

7. This is a result of the Nyquist-Shannon sampling theorem.

8. A comprehensive explanation for how sampling discontinuities can result in spectral
leakage would require an in-depth discussion of the underlying mathematics of a
Fourier Transformation. An excellent discussion of this phenomena (which avoids
the heavy math) can be found at Windows and Spectral Leakage11

9. This is because the result of a real valued FFT is conjugate symmetric, or Hermitian,
with the exception of the first value.

10. Designing a filter to smooth the data in this manner is very simplistic and does not
account for key filtering criteria such as frequency and impulse response, phase
shifting, causality or stability. Application of more rigorous design methods such as
a Parks-McClellan algorithm would be beyond the scope and intention of this paper.

11. https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Windows-and-Spectral-Leakage/ta-p/432760
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11. The smoothing that was performed may have highlighted the longer term trends, but
the background noise remained present. It was therefore necessary to decrease the
sampling frequency (and therefore reduce the largest frequency captured) in order
to better highlight the low frequency/high period trends.
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