kX‘ it's about time

Technical Whitepaper

Multi-partitioned kdb+ databases — an
equity options case study

Date

Author James Hanna has helped design and develop kdb+
implementations and proof of concepts for more than 40
customers. Based in New York, James is a Technical
Architect for Kx, a high-performance data-management,
event-processing and trading platform.

Multi-partitioned kdb+ databases — an equity options case study

Contents
Overview Of the datasetccocevevieirineniirese s 4
OPLIONS SCREIMIA ..cuuiiiiiiiiieieiieeeee ettt ettt st st 6
Loading and saving data ... 8
EXampPle QUETIES ...ccvevveriiriiiiiiiiieteierieeitetetete ettt ettt 11
Snapshot of Option Chainccccovevieiriniii e 14
Building a minutely time series of at-the-money option contracts 15
COMPIESSION ...eeuvinriiieiiiiieietenteee sttt sttt sbesbe bttt besbe b e sttt ees 17

CONCIUSION ettt ettt ettt e e e e e e ssaaaaeteeeeeeseesssssssssssteeeesssssssssssnsenes 18

Multi-partitioned kdb+ databases — an equity options case study

Multi-partitioned kdb+ databases: an equity options
case study

Kdb+ is well suited to managing massive datasets and offers an unrivalled performance
advantage when it comes to processing and analyzing data. This is a case study
highlighting some of the key points we have found with regard to the storage and
maintenance of financial equity options data in kdb+. We also provide some examples
of possible ways to design and query these large databases efficiently.

Multi-partitioned kdb+ databases — an equity options case study

Overview of the dataset

The equity-options data universe is one of the largest financial datasets generated,
and more often than not the most challenging dataset for trading firms to manage and
extract value from in a timely manner. Hundreds of gigabytes of trade and quote
records are published daily from the equity options feeds, with recent daily row count
volumes for Q1 of 2012 having an average and maximum count close to 4 billion and
6 billion rows respectively. These numbers represent a relief of sorts from the peaks
of 2011 where we saw a maximum daily row count of over 13 billion as highlighted
in the chart below.

Frequency by Billions of Rows of Options Data (2011)

70 A
60 -
50 A

H Number of days

Number of Days 40 -
30 1
20 A
10 A

1 2 3 4 5] 7 8 9 10 11 12 13

Billions of Rows

The dataset we use for our examples in this paper includes level 1 trade and quote
data for financial options contracts, the associated reference data and the corresponding
equity level 1 trades and quotes for the same time period. All data has been sourced
from tickdata.com.

The sample dataset has a maximum of approximately 200 million rows for a single
date and includes data for 10 underlying securities. The full universe that our clients
load is typically much larger, covering thousands of underlying securities. For some
of these securities, for example AAPL, the ratio of the number of option quotes to
underlying quotes can be in excess of 60:1 on some dates.

It is thus inevitable that when storing equity options data for a large universe of
underlying securities, the number of rows per partition will regularly exceed 2 billion.
When kdb+ 3.0 was released in 2011 it removed the limit to the number of rows that
can be stored in a single partition. This gives us two options for storing massive tables,
either storing each day of data in a single partition, or storing each day of data in
multiple partitions.

In this paper we cover the use of a multi partitioned database, as whilst kdb+ 3.0
allows the very straight forward option of having a single partition for each date, there

Multi-partitioned kdb+ databases — an equity options case study

are still potential advantages to the approach of storing data across multiple partitions
for a single date.

Firstly, when saving data, multiple partitions can be written concurrently, potentially
reducing the time required to load data from flat files or persist it from memory.
Secondly, when running queries against the database, data from multiple partitions
can be read in parallel using slave threads. In the same way as queries on a database
with a single partition per date can read data for multiple days in parallel, now data
for the same date can be read in parallel. A third advantage related to database
maintenance is that since the size of the individual column data files is reduced, the
memory required to apply a sort to the data on disk will be reduced.

Kdb+ provides a simple method to store the data in multiple partitions for each date
by using the par.txt file. When attempting to read data from a database like this a
large number of queries will behave exactly as they would in a database with only one
partition per date. However there are some cases in which it’s necessary to rework
things a little, most notably in the case of as-of joins. This is covered below.

Multi-partitioned kdb+ databases — an equity options case study

Options schema

Sorting and indexing the options data is straightforward. If we have the data sorted
by underlying security, option contract and finally timestamp we can apply the
partitioned attribute to both underlying security and option contract, allowing us to
filter quickly on either column.

More interesting is the way in which we choose to store the underlying security market
data so that we can link it to the options data efficiently. The simplest way of
accomplishing this would be to store the prevailing value of each underlying alongside
the option trades and quote data. These extra columns would either be provided in
the source data (as was the case in our sample dataset) or could be pre-calculated with
an as-of join and then stored.

The advantage of this method is that we do not need to store any additional underlying
market data and there is no overhead when performing lookups to find the prevailing
underlying quote or last trade for an option quote or trade. However there are two
obvious downsides to using this approach.

The first is that it does not offer any flexibility with regard to how the market data for
an underlying security maps to the corresponding option data, e.g. if we wanted to do
a window join to look at multiple underlying quotes surrounding each option quote.
The second is that a significant amount of extra storage space will be required when
the data is de-normalized in this way compared to storing the underlying market data
in separate tables and doing joins on demand. Even with a frugal schema for the
underlying data, this might add 40-50 bytes of storage for each record (depending on
whether condition code and exchange fields can be stored as single characters or
symbols are required for example). Given that there will be billions of option quotes
per day, this can add hundreds of gigabytes to the daily storage requirements. It is
worth noting that this may not be as large a problem as it first appears given the
possibilities for data compression.

A second possibility is to store underlying market data as completely separate tables
and do any joins we require between the two datasets on a purely ad-hoc basis. This
option offers the lightest storage requirements and also gives us full flexibility in how
we do the joins. It does, however, come with the cost of extra processing time when
searching for the underlying market data related to the option data at query time.
Examples of how this is done can be found in the queries section below.

A third option, a combination of the first two, would be to save the option and
underlying data as separate tables, but to compute row indices in the underlying
market data tables and store them in the option tables as link columns. This requires

Multi-partitioned kdb+ databases — an equity options case study

less space (a single integer column per link to each underlying table) than storing full
underlying trade/quote information along with each option table row, avoids having
to find the correct underlying trade/quote at query time and also gives flexibility by
having all the underlying data available for ad-hoc joins.

Using the third option requires us to ensure that the underlying and option data for
the same securities always reside in the same partition. We can achieve this as part
of the load process outlined below.

Multi-partitioned kdb+ databases — an equity options case study

Loading and saving data

Here we assume some familiarity with loading large data files by splitting the file and
loading in chunks using .Q.fs and .Q.fsn.

@ Cookbook!

Striping data over multiple partitions per date

Firstly we demonstrate how to save a chunk of loaded and parsed data into a database
with multiple partitions per date. In our case we will split the data alphabetically by
underlying symbol into groups as follows: ABC, DEF, GHI, JKL, MNO, PQR, STU
and VWXYZ

We should have a par. txt file containing paths to directories for each of these symbol
groups. The contents of our par.txt file are thus as follows:

/data/0
/data/1
/data/2
/data/3
/data/4
/data/5
/data/6
/data/7

Before demonstrating how we can stripe the data over these directories, it is worth
noting that if future data volumes increase and we wish to partition the data into a
greater number of stripes, we can do this by adding new directories to par. txt without
the need to go back and repartition old data. We would only need to create empty
tables for each existing date for each partitioned table in our db.

With regard to saving a chunk of data, there are many ways to do this but we provide
an example below where we read in a list of available partitions and create some helper
functions to allow us to easily partition and save the data. In the code below the
directory is assumed to be a global variable (DIR) giving the path to our par.txt file
in q format (symbol with a leading colon).

1. http://code.kx.com/q/cookbook/

http://code.kx.com/q/cookbook/

Multi-partitioned kdb+ databases — an equity options case study

// A dictionary mapping alphabetical group to the directory
// in the database we wish to save to
dirs:*ABC*DEF*GHI*JKL MNO*PQR*STUVWXYZ'hsym each‘Sreadd ‘ sv DIR, ‘par.txt

// A function which will return a list of partitions
// to which each of a list of symbols should be saved.
getpart:.Q.fu {[symlist]
key[dirs]0 3 6 9 12 15 18 21 bin .Q.A?first each string symlist,()}

saveonepart:{[dt;tablename;data;part2savel]
(¥ sv dirs[part2savel,(*$string dt),tablename,)set
.0.en[DIR]
delete part from select from data where part=part2save}

We could use the following snippet to save some quote data stored in a variable CHUNK
inside a function called by .Q.fs or .Q.fsn. DATE is assumed to be a global variable
here representing the date for which we are loading data. It is elementary to modify
this to include the possibility of data for more than one date in a particular file load.
This is excluded here for the sake of simplicity.

{

EHUNK:update part:getpart underlyingSym from CHUNK;
saveonepart[DATE; *QUOTE;CHUNK]each distinct exec part from CHUNK;

By implementing the previously-defined getpart function to generate the partition
to save down to based on either the underlyingSym column for options data or the

sym column for underlying market data, we can be sure that related options and
underlying data will be stored in the same partitions.

Once the data has been loaded and saved we will often need to apply an attribute to
one or more of the columns of the data. This is a fairly easy step as we just need to
apply the attribute to a table spread over multiple directories instead of one. In our
example of option quotes we would like to apply the partitioned attribute (* p#) to both
the sym and underlyingSym columns. We can do this as follows:

// function applies p# attribute to sym and underlyingSym columns
// of the quote table for the specified date and directory
addphashes:{[dt;dir]

{[dt;dir;fl@[* sv dir,(“$string dt),‘QUOTE;f; ‘p#13[dt;dir]

each ‘sym‘underlyingSym}

This may be called after loading all the data in our script:

addphashes[DATE]each value dirs;

Multi-partitioned kdb+ databases — an equity options case study

Adding links to market data

If we wish to store links to the underlying data within the option data, a sensible time
to generate and store these links would be just after we have loaded, sorted and added
attributes to the data. We can do this as part of a loader script with the following code.
Here we just create one link stored in the QUOTE table to the corresponding quote in
the EQUOTE (underlying quote) table:

dirs: ‘Sread0 ‘ sv DIR,‘par.txt
addlinks:{[dt;dir]
dir:® sv dir,‘S$string dt;
// compute links as an as-of join.
inds:select ind: x from
ajl‘sym‘timestamp;
select sym:underlyingSym,timestamp from dir‘QUOTE;
select sym,timestamp,i from dir‘EQUOTE];
// save the links
(* sv dir,‘QUOTE underlying)set ‘EQUOTE!exec ind from inds;
// update the metadata of the QUOTE table
u set distinct getlu:" sv dir,‘QUOTE".d], ‘underlying}

Again we should use this for each partition for the date we have just loaded.

addlinks[DATE]each value dirs;

Multi-partitioned kdb+ databases — an equity options case study

Example queries

In all of the examples below variables in caps are used instead of specific values.

Raw options quote data retrieval with underlying quote

In the simplest case where we have the prevailing underlying quote stored alongside
the option quote as columns lastbidPrice and lastaskPrice our query is:

select sym, timestamp, bidPrice, askPrice, lastBidPrice, lastAskPrice from QUOTE
where date=DATE, sym=SYM, time within (STARTTIME;ENDTIME)

For the dataset where we have links to the prevailing underlying quote stored we can
use:

select sym, timestamp, bidPrice, askPrice, underlying.bid, underlying.ask from QUOTE
where date=DATE, sym=SYM, time within (STARTTIME;ENDTIME)

In the case where we have the options data and underlying data stored in separate
tables, we could usually use an as-of join. However, since our database has multiple
partitions per date, specifying the right-most argument of the as-of join in the usual
way does not behave in the same manner as in the case of databases with a single
partition per date. For example, if we look at a standard query to get the prevailing
quote as of each trade we encounter some problems.

ajl sym‘time;
select price from TRADE where date=SOMEDATE, sym in SYMLIST;
select sym, time, bid, ask from quote where date=SOMEDATE]

In the case of a database with a single partition per date, this as-of join does not read
the entire sym, time, bid and ask columns into memory before performing the lookup,
rather it searches for the correct rows from a memory map of the quote table. In a
database with multiple partitions per date, the following part of the previous query
proves problematic:

select sym, time, bid, ask from EQUOTE where date=SOMEDATE

This now causes all of the data to be mapped and read into memory so that the as-of
join can be performed. Not only is this undesirable due to the extra I/O required but
because multiple memory-mapped partitions are being collapsed into one in memory
table, it also has the detrimental side effect of removing the partitioned attribute
normally found on the sym column since rows with the same symbol could occur in

1

Multi-partitioned kdb+ databases — an equity options case study

multiple partitions. This is not something that should actually occur in this database
but since it is possible, kdb+ will defensively remove the partitioned attribute. In
addition, because part of the reason we chose a database with multiple partitions for
each date was to ensure no single partition was bigger than 2 billion rows, we may
even hit a limit error when trying to do as-of joins against large tables. (This could
only occur when using a version of kdb+ older than 3.0).

The result of the above is that not only would a join take longer because more data is
being read from the disk but also the join itself will be performed much more slowly.
A particular technique to work around this would be to create our own function which
will perform joins against each memory-mapped partition for a certain date without
reading the full table into memory, then aggregate the results from each partition.

In the function below the parameters are specified as follows:

parameter denotes

c Alist of column names upon which to perform the as-of join, just as we would have with
aregular aj

t1 The first table, just as in the case of a regular aj

t2 The second table name, a symbol giving the name of a partitioned table. (To do an as-of
join on a non-partitioned table, use a regular aj.)

t2d The date upon which to do the join. (Do one date at a time if there are multiple dates.)

t2c A list of column expressions for the selection from the partitioned table, e.g.

(“Ticker;‘Timestamp;‘Trade;‘TradeSize;(log; TradeSize)) - usually some subset
of the column names in the table

t2cn A list of column aliases in the partitioned table e.g.
‘Ticker‘Timestamp‘price‘size lnprice

ajparted:{[c;t1;t2n;t2d;t2c;t2cen]
if[not all c in t2cn;'‘missingcols];
/ we want just one row per row in the input, so put a row id as a key
/ and just fill values in the input table with
/ rows that are found for the second table
/ build table a table with the right schema to start
t1:'rid xkey update rid:‘s#i from
ajlc;t1;?2[t2n;enlist(<; date;first date);0b;t2cn!t2cll;
/ do aj's on each partition of the second table with the first table,
/ only return rows that we have values for,
/ then upsert these to the keyed t1
delete rid from 0!t1,/
{[c;t1;t2n;t2d;t2e;t2en;x]
inds@:vinds:where not null inds:
(c#M:2[(* sv'$string x,t2d)t2n;();0b;t2cn!t2c])bin (c#value t1);
11(0!'t1) [vinds],'M inds}[c;t1;t2n;t2d;t2c;t2cen]
peach distinct .Q.pd}

Returning to our original example query of getting the prevailing underlying quote
information for a particular set of option quotes, we can use the following call to the
ajparted function:

Multi-partitioned kdb+ databases — an equity options case study

t1: select sym,timestamp,bidPrice,askPrice from QUOTE
where date=SOMEDATE,sym in SYMLIST,timestamp within (STARTTIME:ENDTIME)

ajparted[‘underlyingSym*timestamp;t1; EQUOTE;SOMEDATE;
‘sym*timestamp‘bid‘ask; ‘underlyingSym‘timestamp‘bid‘ask]

13

Multi-partitioned kdb+ databases — an equity options case study

Snapshot of option chain

This is an example where we have an underlying symbol and want to get a snapshot
of the quotes available for all options at a given time.

Firstly, we will need to query the security master table (called mas in our case) for all
option data available on the given date for this underlying and then find the last quote
available for each option at, or prior to, the given time.

The available option contracts may be queried from a security master table, mas, using
the following:

optsyms:select sym from mas
where date=0URDATE, underlyingSym=0URSYM

Now that we have all of the options contracts we require, the question becomes how
to query the QUOTE table to get the available quote for each option at the given time.
One way to do this would be to write a query to extract the last quote prior to the time
in question for each option:

select last bid, last ask by sym from QUOTE
where date=0URDATE, sym in optsyms, time<=0URTIME

However, this is another place where we would normally use an as-of join since it
allows us to efficiently search for the last record prior to the time in question rather
than scan through all of the records for each symbol to see if the timestamp constraint
is fulfilled. We can use the same function from the previous example to do an as-of
join here. Firstly, we use the cross function to create a table of symbol and time pairs
in order to carry out the as-of join:

rack:optsyms cross ([Jtimestamp:1#0URTIME)

Now we can use ajparted to find the correct rows from the QUOTE table

ajparted[‘sym*timestamp;rack; QUOTE;OURDATE;
‘sym‘timestamp‘bid‘ask;‘sym*timestamp bid ask]

In the previous example we were able to avoid an ad-hoc as-of join provided we had
underlying data (or pre-calculated links to it) stored alongside the options quote data.
In this case however, we will need to use an as-of join regardless of how the data is
stored.

Multi-partitioned kdb+ databases — an equity options case study kX

Building a minutely time series of at-the-money
option contracts

In our final example, we demonstrate the creation of a minutely time series based on
the idea of a generic option contract. In this case we choose a condition specifying
this contract as the next expiring call contract nearest to at-the-money.

Initially, we create a time series of minutely bars for the underlying symbol so we can
determine which actual option contract we should use at each point. Given we are
working with relatively low-volume trade data, we do this with a regular grouping
and aggregation query. Note that we could also use ajparted with a rack of symbol
and time pairs as in the above example.

bars:select last price by time.minute from ETRADE
where date=ourdate, sym=0URSYM

We now need to find the particular contracts that are available on our chosen date
and the one that is closest to at-the-money at each point in our series.

We can wrap up the logic for choosing a contract into a function with parameters for
date, underlying security, contract type (call or put) and price:

closest2atm:{[d;s;t;p]
/ A list of all the nearest expiring contracts on this date
cands:‘strike xasc select sym,strike from mas
where date=d, underlyingSym=s, typ=t, expir=(min;expir)fby underlyingSym;
/ A list of all strike prices with midpoints between,
/ we can then use bin to find the contract with a strike price to our prices
searchlist:1_raze{avglx,yl,x}':[cands‘strikel;
inds:searchlist bin p;
/ Any odd indices in inds mean price is closer to strike above
/ add one to these and divide everything by 2 to give the indices into cands
inds[where 1=inds mod 2]+:1;
inds:inds div 2;
/ return the list of at-the-money symbols
cands[‘symlinds}

update sym:closest2atm[OURDATE;OURSYM;"C";price] from ‘bars

Finally we query the closing bid and ask for each of these bars:

Multi-partitioned kdb+ databases — an equity options case study

ajparted[
‘sym‘timestamp;
select sym, minute, timestamp:‘timespan$minute, price from bars;
“QUOTE; OURDATE;
‘sym‘timestamp‘bid‘ask; ‘sym‘timestamp‘bid‘ask]

Multi-partitioned kdb+ databases — an equity options case study

Compression

The use of compression for all or part of the dataset here is outside the scope of this

whitepaper, however, this is undoubtedly an important feature to consider using for
options data.

@ Cookbook: File compression?

2. http://code.kx.com/q/cookbook/file-compression/

http://code.kx.com/q/cookbook/file-compression/

Multi-partitioned kdb+ databases — an equity options case study

Conclusion

Storing and querying options data can present challenges due to the volume of data
involved. While the introduction of kdb+ 3.0 lets clients easily handle the
ever-increasing data volumes by removing the per-partition limit of 2 billion rows,
there are still several potential benefits to storing the tick data in multiple partitions
per date as outlined in Overview of the dataset. As we have seen however, in choosing
this approach it will be necessary to write some queries in a different way to achieve
the best performance.

Regardless of whether the data is stored in a single partition per date or in a
multi-partitioned manner, the choice of schema will still impact the storage space
required for the data and queries against the database. Here we have presented several
different schema choices and examples of several simple queries implemented for
each schema.

18

	Overview of the dataset
	Options schema
	Loading and saving data
	Example queries
	Snapshot of option chain
	Building a minutely time series of at-the-money option contracts
	Compression
	Conclusion

