

 Skip to content

 [image: logo]

 Kdb+ and q documentation

 Kdb+ and FIX messaging | White Papers | q and kdb+ documentation

 Initializing search

 Ask a question

 	

 Home

	

 kdb+ and q

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

	

 Language

	

 Database

	

 Developing

	

 Architecture

	

 Help

 [image: logo]

 Kdb+ and q documentation

 	

 Home

	

 kdb+ and q

 kdb+ and q

 	

 About

	

 Reference card

	

 Developer tools

	

 Interfaces

 Interfaces

 	

 KX libraries

	

 Bloomberg

	

 C/C++

 C/C++

 	

 Quick guide

	

 API reference

	

 C API for kdb+ (WP)

	

 Using C/C++ functions

	

 Excel

	

 FIX messaging (WP)

 FIX messaging (WP)

 On this page

 	

 FIX messages

 	

 FIX message format

	

 Feed handler

	

 FIX tags

 	

 MsgType

	

 OrdStatus

	

 Commission

	

 LastCapacity

	

 Example – order state

 	

 Approach

	

 Schema

	

 Processing orders

	

 New orders

	

 Amendments and cancellations

	

 Execution reports

	

 Conclusion

	

 Author

	

 GPUs

	

 Lightning tickerplants (WP)

	

 Matlab

	

 ODBC

	

 ODBC3

	

 R

	

 Scala

	

 Open source

	

 Machine learning

	

 Using kdb+ in the cloud

 Using kdb+ in the cloud

 	

 About

	

 Amazon Web Services

 Amazon Web Services

 	

 Reference architecture

	

 Amazon EC2 & Storage Services

 Amazon EC2 & Storage Services

 	

 Migrating a kdb+ HDB to Amazon EC2

	

 Elastic Block Store (EBS)

	

 EFS (NFS)

	

 Amazon Storage Gateway

	

 FSx for Lustre

	

 AWS Lambda

	

 Microsoft Azure

 Microsoft Azure

 	

 Reference architecture

	

 Google Cloud

 Google Cloud

 	

 Reference architecture

	

 Auto Scaling (WP)

 Auto Scaling (WP)

 	

 About

	

 Amazon Web Services

	

 Realtime data cluster

	

 Costs and risks

	

 Surveillance in the Cloud (WP)

	

 Other file systems

 Other file systems

 	

 MapR-FS

	

 Goofys

	

 S3FS

	

 S3QL

	

 ObjectiveFS

	

 WekaIO Matrix

	

 Quobyte

	

 DigitalOcean

	

 Community

	

 kdb+ and q forum

	

 White papers

	

 About this site

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

 Learn

 	

 Get started

	

 Install

	

 Licenses

	

 Mountain tour

 Mountain tour

 	

 Overview

	

 Begin here

	

 The q session

	

 Tables

	

 CSVs

	

 Datatypes

	

 Scripts

	

 IDE

	

 Q for quants

	

 Q by Examples

	

 Q for All

	

 Examples from Python

 Examples from Python

 	

 Basic

	

 Array

	

 List

	

 Strings

	

 Dictionaries

	

 Q for Mortals 3

	

 Q by Puzzles

 Q by Puzzles

 	

 About

	

 12 Days of Xmas

	

 ABC problem

	

 Abundant odds

	

 Four is magic

	

 Name Game

	

 Summarize and Say

	

 Word wheel

	

 Reading room

 Reading room

 	

 Information desk

	

 Boggle

	

 Cats cradle

	

 Fizz buzz

	

 Klondike

	

 Phrasebook

	

 Scrabble

	

 Application examples

 Application examples

 	

 Astronomy (WP)

	

 Bitcoin blockchains (WP)

	

 Card counters (WP)

	

 Corporate actions (WP)

	

 Disaster management (WP)

	

 Exoplanets (WP)

	

 Market depth (WP)

	

 Market fragmentation (WP)

	

 Option pricing (WP)

	

 Predicting floods (WP)

	

 Signal processing (WP)

	

 Space weather (WP)

	

 Trading surveillance (WP)

	

 Transaction-cost analysis (WP)

	

 Trend indicators (WP)

	

 Advanced q

 Advanced q

 	

 Remarks on Style

	

 Shifts & scans

	

 Technical articles

	

 Views

	

 Origins

	

 Terminology

	

 Starting kdb+

 Starting kdb+

 	

 Overview

	

 The q language

	

 IPC

	

 Tables

	

 Historical database

	

 Realtime database

	

 Language

 Language

 	

 Reference card

	

 By topic

	

 Iteration

 Iteration

 	

 Overview

	

 Implicit iteration

	

 Iterators

	

 Maps

	

 Accumulators

	

 Guide to iterators (WP)

	

 Keywords

 Keywords

 	

 abs

	

 aj, aj0, ajf, ajf0

	

 all, any

	

 and

	

 asc, iasc, xasc

	

 asof

	

 attr

	

 avg, avgs, mavg, wavg

	

 bin, binr

	

 ceiling

	

 count, mcount

	

 cols, xcol, xcols

	

 cor

	

 cos, acos

	

 cov, scov

	

 cross

	

 csv

	

 cut

	

 delete

	

 deltas

	

 desc, idesc, xdesc

	

 dev, mdev, sdev

	

 differ

	

 distinct

	

 div

	

 dsave

	

 each, peach

	

 ej

	

 ema

	

 enlist

	

 eval, reval

	

 except

	

 exec

	

 exit

	

 exp, xexp

	

 fby

	

 fills

	

 first, last

	

 fkeys

	

 flip

	

 floor

	

 get, set

	

 getenv, setenv

	

 group

	

 gtime, ltime

	

 hcount

	

 hdel

	

 hopen, hclose

	

 hsym

	

 ij, ijf

	

 in

	

 insert

	

 inter

	

 inv

	

 key

	

 keys, xkey

	

 like

	

 lj, ljf

	

 load, rload

	

 log, xlog

	

 lower

	

 lsq

	

 max, maxs, mmax

	

 md5

	

 med

	

 meta

	

 min, mins, mmin

	

 mmu

	

 mod

	

 neg

	

 next, prev, xprev

	

 not

	

 null

	

 or

	

 over, scan

	

 parse

	

 pj

	

 prd, prds

	

 prior

	

 rand

	

 rank

	

 ratios

	

 raze

	

 read0

	

 read1

	

 reciprocal

	

 reverse

	

 rotate

	

 save, rsave

	

 select

	

 show

	

 signum

	

 sin, asin

	

 sqrt

	

 ss, ssr

	

 string

	

 sublist

	

 sum, sums, msum, wsum

	

 sv

	

 system

	

 tables

	

 tan, atan

	

 til

	

 trim, ltrim, rtrim

	

 type

	

 uj, ujf

	

 union

	

 ungroup

	

 update

	

 upsert

	

 value

	

 var, svar

	

 view, views

	

 vs

	

 where

	

 within

	

 wj, wj1

	

 xbar

	

 xgroup

	

 xrank

	

 Overloaded glyphs

	

 Operators

 Operators

 	

 Add

	

 Amend

	

 Apply, Index, Trap

	

 Assign

	

 Cast

	

 Coalesce

	

 Compose

	

 Cut

	

 Deal, Roll, Permute

	

 Delete

	

 Display

	

 Dict

	

 Divide

	

 Dynamic Load

	

 Drop

	

 Enkey, Unkey

	

 Enumerate

	

 Enumeration

	

 Enum Extend

	

 Equal

	

 Exec

	

 File Binary

	

 File Text

	

 Fill

	

 Find

	

 Flip Splayed

	

 Greater

	

 Greater Than

	

 Identity, Null

	

 Join

	

 Less Than

	

 Lesser

	

 Match

	

 Matrix Multiply

	

 Multiply

	

 Not Equal

	

 Pad

	

 Select

	

 Set Attribute

	

 Simple Exec

	

 Signal

	

 Subtract

	

 Take

	

 Tok

	

 Update

	

 Vector Conditional

	

 Control constructs

 Control constructs

 	

 Cond

	

 do

	

 if

	

 while

	

 Namespaces

 Namespaces

 	

 .h

	

 .j

	

 .m

	

 .Q

	

 .z

	

 Application

	

 Atomic functions

	

 Comparison

	

 Conformability

	

 Connection handles

	

 Datatypes

	

 Dictionaries

	

 Enumerations

	

 Evaluation control

	

 Exposed infrastructure

	

 File system

	

 Function notation

	

 Functional qSQL

	

 Glossary

	

 Internal functions

	

 Joins

	

 Mathematics

	

 Metadata

	

 Namespaces

	

 Parse trees

	

 Parse trees, functional SQL (WP)

	

 QSQL queries

	

 Regular Expressions

	

 Syntax

	

 Tables

	

 Variadic syntax

	

 Database

 Database

 	

 Tables in the filesystem

	

 Populating tables

 Populating tables

 	

 Loading from large files

	

 Foreign keys (WP)

	

 Linking columns

	

 Data loaders (WP)

	

 From MDB via ODBC

	

 Persisting tables

 Persisting tables

 	

 Serializing an object

	

 Splayed tables

	

 Partitioned tables

	

 Segmented databases

	

 Multiple partitions (WP)

	

 Maintenance

 Maintenance

 	

 Data management (WP)

	

 Data-At-Rest Encryption

	

 File compression

	

 Compression (WP)

	

 Permissions (WP)

	

 Query optimization (WP)

	

 Query scaling (WP)

	

 Time-series simplification (WP)

	

 Compacting HDB sym

	

 Working with sym files (WP)

	

 Developing

 Developing

 	

 IPC

 IPC

 	

 Overview

	

 Callbacks

	

 Listening port

	

 Named pipes

	

 Serialization examples

	

 Server calling client

	

 Socket sharding (WP)

	

 SSL/TLS

	

 WebSockets

	

 Interprocess communication (WP)

	

 Tools

 Tools

 	

 Code profiler

	

 Debugging

	

 Errors

	

 man.q

	

 System commands

	

 Unit tests

	

 Using .z

	

 Coding

 Coding

 	

 Data visualization (WP)

	

 Deferred response

	

 Geospatial indexing

	

 Linear programming

	

 Multithreaded input

	

 Multithreaded primitives

	

 Pivoting tables

	

 Precision

	

 Programming examples

	

 Programming idioms

	

 Temporal data

	

 Timezones

	

 Unicode

	

 DevOps

 DevOps

 	

 Authentication and access

	

 Command-line options

	

 CPU affinity

	

 Custom web server

	

 Daemon

	

 Firewalling

	

 inetd, xinetd

	

 Linux production notes

	

 Logging

	

 Multi-threading (WP)

	

 Multiple versions

	

 Parallel processing

	

 Performance tips

	

 Replay logfile

	

 Shebang script

	

 Surveillance latency (WP)

	

 Windows service

	

 Release notes

 Release notes

 	

 History

	

 Changes in 4.1

	

 Changes in 4.0

	

 Changes in 3.6

	

 Changes in 3.5

	

 Changes in 3.4

	

 Changes in 3.3

	

 Changes in 3.2

	

 Changes in 3.1

	

 Changes in 3.0

	

 Changes in 2.8

	

 Changes in 2.7

	

 Changes in 2.6

	

 Changes in 2.5

	

 Changes in 2.4

	

 Withdrawn

	

 FAQ

	

 Architecture

 Architecture

 	

 About

	

 Examples

	

 Alternative in-memory layouts

	

 Chained tickerplant

	

 Client-server

	

 Corporate actions

	

 Data recovery for kdb+tick (WP)

	

 Disaster recovery (WP)

	

 Gateway design (WP)

	

 Kdb+tick configuration

	

 Kdb+tick profiling (WP)

	

 Kubernetes

	

 Load balancing

	

 Memory backed by files

	

 Optane Memory

 Optane Memory

 	

 Optane Memory and kdb+

	

 Performance tests

	

 Order Book (WP)

	

 Publish and subscribe

	

 Pub/sub with Solace (WP)

	

 Query Routing (WP)

	

 Real-time tick subscribers (WP)

	

 WebSockets (WP)

	

 Write-only RDB

	

 Advanced

 Advanced

 	

 Distributed systems (WP)

	

 Intraday writedown (WP)

	

 Help

 On this page

 	

 FIX messages

 	

 FIX message format

	

 Feed handler

	

 FIX tags

 	

 MsgType

	

 OrdStatus

	

 Commission

	

 LastCapacity

	

 Example – order state

 	

 Approach

	

 Schema

	

 Processing orders

	

 New orders

	

 Amendments and cancellations

	

 Execution reports

	

 Conclusion

	

 Author

White paper

Kdb+ and FIX messaging¶

by Damien Barker

Electronic trading volumes have increased significantly in recent years, prompting financial institutions, both buy and sell side, to invest in increasingly sophisticated Order Management Systems (OMS). OMSs efficiently manage the execution of orders using a set of pre-defined conditions to obtain the best price of execution. OMSs typically use the Financial Information eXchange (FIX) protocol, which has become the industry standard for electronic trade messaging since it was first developed in 1992.

The demand for post-trade analytics and compliance requirements (for example proving a client order was filled at the best possible price) provide a need to retain all the FIX messages produced by an OMS. For large volumes of data this can prove extremely challenging; however kdb+ provides an ideal platform to capture and process the FIX messages. It allows efficient querying of large volumes of historical data, and in conjunction with a kdb+ tick set-up can produce powerful real-time post-trade analytics for the front office users.

This paper will introduce the key steps to capture a FIX message feed from an OMS, and understand the data contained within each message. We produce an example that demonstrates a kdb+ set up that captures a FIX feed and produces a final-order state table.

All tests were run using kdb+ version 3.1 (2013.12.27)

FIX messages¶

FIX message format¶

FIX messages consist of a series of key-value pairs that contain all the information for a particular state of a transaction. Each tag relates to a field defined in the FIX specification for a given system. In FIX4.4, tags 1-956 are predefined and values for these fields must comply with the values outlined in the FIX protocol. Outside of this range custom fields may be defined; these may be unique to the trading system or firm. Some common tags are tabulated below.

1 Account 29 LastCapacity
6 AvgPx 30 LastMkt
8 BeginString 31 LastPx
9 BodyLength 32 LastQty
10 CheckSum 34 MsgSeqNum
11 ClOrdID 35 MsgType
12 Commission 37 OrderID
13 CommType 38 OrderQty
14 CumQty 39 OrderStatus
15 Currency 49 SenderCompID
17 ExecID 52 SendingTime
19 ExecRefID 56 TargetCompID
21 HandlInst 151 LeavesQty

Some common FIX tags and respective fields

A FIX message is comprised of a header, body and trailer. All messages must begin with a header consisting of BeginString (8), BodyLength (9), MsgType (35), SenderCompID (49), TargetCompID (56), MsgSeqNum (34) and SendingTime (52) tags. BeginString states the FIX version used, BodyLength is a character count of the message and MsgType gives the type of message, for instance New Order, Execution Report, etc.

SenderCompID and TargetCompID contain information on the firms sending and receiving the message respectively. The message must finish with tag CheckSum (10); this is the count of all characters from tag 35 onwards including all delimiters. The body of the message consists of all other relevant tags, depending on the message type. FIX messages are delimited by ASCII SOH (Start of Heading), however as this unprintable we will use | as a delimiter in this paper. Below is an example of some FIX messages that we will use for this whitepaper.

8=FIX.4.4|9=178|35=D|49=A|56=B|1=accountA|6=0|11=00000001|12=0.0002|
 13=2|14=|15=GBp|17=|1

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=0|
 11=00000001|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|37=|38=10000|39=0|41=|44=|48=VOD.L|
 50=AB|52=20131218-09:01:13|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:13|10=168

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.5|
 11=00000001|12=|13=|14=1500|15=GBp|17=1 00000001|19=|
 21=1|29=1|30=XLON|31=229.5|32=1500|37=|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:02:01|54=1|55=VOD|58=|59=1|
 60=20131218-09:02:01|10=193

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6125|
 11=00000001|12=|13=|14=6000|15=GBp|17=100000002|19=|
 21=1|29=1|30=XLON|31=229.65|32=4500|37=|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:03|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:03|10=197

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6353846|
 11=00000001|12=|13=|14=6500|15=GBp|17=100000003|19=|
 21=1|29=1|30=XLON|31=229.91|32=500|37=|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:14|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:14|10=199

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.7496933|
 11=00000001|12=|13=|14=8150|15=GBp|17=100000004|19=|
 21=1|29=1|30=XLON|31=230.2|32=1650|37=|38=10000|39=1|41=|44=|48=VOD.L|
 50=AB|52=20131218-09:01:15|54=1|55=VOD|58=|59=1|60=20131218-09:01:15|10=199

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6295|
 11=00000001|12=|13=|14=10000|15=GBp|17=100000005|19=|
 21=1|29=1|30=XLON|31=229.1|32=1850|37=|38=10000|39=2|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:46|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:46|10=197

Feed handler¶

A feed handler may be used to deliver the messages to kdb+. The feed handler should receive the flow of FIX messages from the OMS, parse the messages to extract the required fields and send them to the kdb+ tickerplant. Feed handlers are generally written in Java or C++ and are widely available, for example from KX.

For the example provided in this white paper we load a file of FIX messages to a q feed handler. Our feed handler reads each FIX message from the file, extracts the tags and casts to the desired q type.

The FIX tag and field names are stored in a FIX specification, which should include all possible tags from the OMS including any custom tags unique to our setup. The FIX specification allows us to create reference dictionaries to map the tags to the correct column names.

q)fixTagToName
1 | Account
6 | AvgPx
8 | BeginString
11| ClOrdID
12| Commission
13| CommType
14| CumQty
...

We include functions to parse the FIX messages and extract the desired
tags. These functions can also be included in the RDB to allow us to
extract additional information from the raw FIX message for fields not
included in our schema.

getAllTags:{[msg](!)."S=|"0:msg}
getTag:{[tag;msg](getAllTags[msg])[tag]}

We read the file containing the FIX messages, parse each message to extract the information and flip into a table.

fixTbl:(uj/)
 {flip fixTagToName[key d]!value enlist each d:getAllTags x}
 each fixMsgs

We need to extract the desired fields and cast to the correct type. Functions are used to match the schema of our FIX messages to a predefined schema in the RDB.

colConv:{[intype;outtype]
 $[(intype in ("C";”c”))&(outtype in ("C";”c”)); eval';
 (intype in ("C";”c”)); upper[outtype]$;
 (outtype in ("C";”c”)); string;
 upper[outtype]$string] }

matchToSchema:{[t;schema]
 c:inter[cols t;cols schema];
 metsch:exec "C"^first t by c from meta schema;
 mett:exec "C"^first t by c from meta t;
 ?[t;();0b;c!{[y;z;x](colConv[y[x];z[x]];x)}[mett;metsch] each c] }

We add the full FIX message to the table as a column of strings. This ensures no data is lost from the original message that was received and information can easily be obtained when necessary. The FIX message is then sent to the tickerplant.

genFixMsgs:{[]
 //read fix message file
 fixMsgs:read0 hsym `$path,"/fixMsgs.txt";
 // extract each tag, map to name and convert to table
 fixTbl:(uj/)
 {flip fixTagToName[key d]!value enlist each d:getAllTags x}
 each fixMsgs;
 // cast fixTbl to correct types
 t:matchToSchema[fixTbl;fixmsgs];
 // Add the original fix message as a column
 update FixMessage:fixMsgs from t }

runFIXFeed:{[]
 t:genFixMsgs[];
 tick_handle[“upd”;`fixmsgs;t]; }

FIX tags¶

In this section we look at some of the most important FIX messages.

MsgType¶

MsgType (tag 35) is a required field in the FIX message. It defines the type of message received, for example order, execution, allocation, heartbeat, Indication of Interest, etc. For the purpose of this paper we limit ourselves to handling the following message types, which will be most common from an OMS.

	code	meaning
	8	Execution report
	D	Order – single
	G	Order cancel/Replace request
	F	Order cancel request

Every time we receive a new order, the first message should contain MsgType D. We should only receive one D message per order. If this has to be amended at any stage we should receive an order replace request, (MsgType G), to replace the original order.

As the order executes we will receive execution reports (MsgType 8) for each execution. These are linked back to the original order through one of the ID fields, generally ClOrdID. The execution message contains some important updates to the overall state of the order, particularly CumQty and AvgPx.

If the order is cancelled before the full order quantity is executed, a Cancel Request (MsgType F) message is sent. This can be rejected with an Order Cancel Reject (MsgType 9) and the order will continue to execute. It is important to note that this only cancels any outstanding shares not yet executed and not the full order.

OrdStatus¶

OrdStatus tells us the current state the order is in. It is an important indicator in cases where the order has not been filled, showing if it is still executing, cancelled, done for the day (for multi-day orders) etc. The valid values are:

0 New 7 Stopped
1 Partially filled 8 Rejected
2 Filled 9 Suspended
3 Done for day A Pending New
4 Canceled B Calculated
5 Replaced C Expired
6 Pending Cancel/Replace

Commission¶

In FIX there are two fields needed to obtain the correct commission on an order: Commission (12) and CommType (13). Commission and CommType both return a numerical value; the latter a number defined as follows:

1 per unit (implying shares, par, currency, etc)
2 percentage
3 absolute (total monetary amount)
4 (for CIV buy orders) percentage waived - cash discount
5 (for CIV buy orders) percentage waived - enhanced units
6 points per bond or contract

We will only be concerned with the first three cases (from the list above) for our example in this paper. We define a function to calculate the commission value:

calcComm:{[comval;comtyp;px;qty]
 $[comtyp=`1; comval*qty;
 comtyp=`2; comval*px*qty;
 comtyp=`3; comval] }

LastCapacity¶

LastCapacity tells us the broker capacity in the execution. It indicates whether a fill on an order was executed as principal or agency. A principal transaction occurs when the broker fills the part of the order from its own inventory while an agency transaction involves the broker filling the order on the market. It is vital in calculating benchmarks or client loss ratios to distinguish between principal and agency flow. The valid values are:

1 Agent
2 Cross as agent
3 Cross as principal
4 Principal

Example – order state¶

Approach¶

Our aim is to create a final-state table for all orders. In our example the RDB will subscribe to the tickerplant, receive all the messages and generate an order state. For large volumes this could be separated in two processes: the RDB should just capture all messages from the tickerplant and store them in a single table while a separate process can then be set up to subscribe to this table and generate the order and execution tables.

This example details an approach to handling the most common messages expected from an OMS. The standard fields expected from an OMS are included, along with some derived
fields.

Schema¶

We set up the schema below for the fixmsgs table. It contains columns for every tag defined by our FIX spec, and well as a column called FixMessage, which contains the full FIX message as a string, and a column containing the tickerplant time. The FixMessage field is important as any information in the FIX message missing from our schema can still be extracted.

fixmsgs:([]
 Account:`$();
 AvgPx:`float$();
 ClOrdID:();
 Commission:`float$();
 CommType:`$();
 CumQty:`float$();
 Currency:`$();
 ExecID:();
 ExecRefID:();
 HandlInst:`$();
 LastCapacity:`$();
 LastMkt:`$();
 LastPx:`float$();
 LastQty:`int$();
 LeavesQty:`float$();
 MsgType:`$();
 OrderID:();
 OrderQty:`int$();
 OrdStatus:`$();
 OrigClOrdID:();
 Price:`float$();
 SecurityID:`$();
 SenderSubID:`$();
 SendingTime:`datetime$();
 Side:`$();
 Symbol:`$();
 Text:();
 TimeInForce:`$();
 TransactTime:`datetime$();
 FixMessage:();
 Time:`datetime$())

The order schema contains the core fields from the fixmsgs schema as well as derived fields: OrderTime and AmendTime. These fields are not included in the FIX spec but will be required by end users and as such are added in the RDB. The order table is keyed on OrderID. In practice a ClOrderID or a combination of ClOrderID and OrigClOrdID may be needed. If an order is cancelled and replaced the OrigClOrdID contains the ClOrderID of the previous version of the order. Only the final version is required in the final state, so we need to track these orders.

order:([OrderID:()]
 ClOrdID:();
 OrigClOrdID:();
 SecurityID:`$();
 Symbol:`$();
 Side:`$();
 OrderQty:`int$();
 CumQty:`float$();
 LeavesQty:`float$();
 AvgPx:`float$();
 Currency:`$();
 Commission:`float$();
 CommType:`$();
 CommValue:`float$();
 Account:`$();
 MsgType:`$();
 OrdStatus:`$();
 OrderTime:`datetime$();
 TransactTime:`datetime$();
 AmendTime:`datetime$();
 TimeInForce:`$())

Processing orders¶

We define the following upd function on the RDB:

upd:{[t;x]
 t insert x;
 x:`TransactTime xasc x;
 updNewOrder[`order;select from x where MsgType in `D];
 x:select from x where not MsgType in `D;
 {$[(first x`MsgType)=`8; updExecOrder[`order;x];
 (first x`MsgType)=`G; updAmendOrder[`order;x];
 (first x`MsgType) in `9`F; updCancelOrder[`order;x];
 :()];
 } each (where 0b=(=':)x`MsgType) cut x }

And a series of functions to handle each MsgType:

updNewOrder:{[t;x] ...}
updAmendOrder:{[t;x] ...}
updCancelOrder:{[t;x] ...}
updExecOrder:{[t;x] ...}

We first ensure the messages are ordered correctly, according to TransactTime. This is so the messages are processed in the order they were generated, which is important when looking at the final state of an order.

New orders are processed first since we should only ever receive one D message per order.

updNewOrder[`order;select from x where MsgType in `D]

For all subsequent updates for each order we need to ensure that all amendments, cancellations and executions are handled in the correct order. We separate the remaining messages into chunks of common MsgType and process each chunk sequentially. This is particularly important in the case where we receive an amended order in the middle of a group of executions. This is essential for the final order state to show the correct TransactTime, MsgType and OrdStatus of the final order.

{$[(first x`MsgType)=`8;
 updExecOrder[`order;select from x where MsgType in `8];
 updAmendOrder[`order;select from x where MsgType in `G`F]] } each
 (where 0b=(=':)x`MsgType) cut x

New orders¶

Whenever a new order is received we must ensure it is entered into our final-state table. We define the following function:

updNewOrder:{[t;x]
 x:update OrderTime:TransactTime from x;
 t insert inter[cols t;cols x]#x; }

For each order, users will want to know the time the order was received. TransactTime is not sufficient here, since it will be overwritten in the final-state table by subsequent updates. We introduce a custom field called OrderTime. This contains the TransactTime of the new order message and will not be updated by any other messages.

For a new order message we want to insert all the columns provided in the FIX message. We extract all common columns between our message and the schema. We also note the order table is keyed on OrderID.

t insert inter[cols t;cols x]#x

We receive the following new-order FIX messages from the OMS.

8=FIX.4.4|9=178|35=D|49=A|56=B|1=accountA|6=0|
 11=0000001|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=10000|37=00000001|38=10000|39=|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:00|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:00|10=184

8=FIX.4.4|9=178|35=D|49=A|56=B|1=accountB|6=0|
 11=0000002|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=4000|37=00000002|38=4000|39=|
 41=|44=|48=RIO.L|50=AD|52=20131218-10:24:07|54=2|55=RIO|58=|59=1|
 60=20131218-10:24:07|10=182

8=FIX.4.4|9=178|35=D|49=A|56=B|1=accountA|6=0|
 11=0000003|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=20100|37=00000003|38=20100|39=|
 41=|44=|48=BARC.L|50=AR|52=20131218-11:18:22|54=1|55=BARC|58=|59=1|
 60=20131218-11:18:22|10=186

8=FIX.4.4|9=178|35=D|49=A|56=B|1=accountC|6=0|
 11=0000004|12=0.0002|13=2|14=|15=

The order state shows a series of unfilled orders. The CumQty and OrdStatus are initially null, as they are not present on the new order message. They will be populated by subsequent execution updates.

q)select OrderID, MsgType, OrdStatus, SecurityID, Account,
 OrderQty, CumQty, Commission from order
OrderID MsgType OrdStatus SecurityID Account OrderQty CumQty Commission

"00000001" D VOD.L accountA 10000 0.0002
"00000002" D RIO.L accountB 4000 0.0002
"00000003" D BARC.L accountA 20100 0.0002
"00000004" D EDF.PA accountC 15000 0.0002
"00000005" D VOD.L accountD 3130 0.0002

Amendments and cancellations¶

Any value of the order may be amended by sending a message with MsgType G. This could reflect a correction to commission value, a change in the order quantity etc.

The function to update amendments differs slightly from that for new orders. A field to display the latest amend time is added – this provides the end user with the TransactTime of the last change to the order. Every amend message should have been preceded by a new order message, so the amendment is upserted (rather than inserted) into the order state table. A production system could include some sanity checks to ensure we have received an order for any amendment.

updAmendOrder:{[t;x]
 x:update AmendTime:TransactTime from x;
 t upsert inter[cols t;cols x]#x; }

The following example shows an update to the commission value. We have received a new order with commission specified in percent. An update modifies this to an absolute value. The amendment is reflected in the order state and the total value of the commission is extracted using the calcComm function outlined earlier.

8=FIX.4.4|9=178|35=G|1=accountA|6=253.8854627|
 11=0000003|12=700|13=3|14=20100| 15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=0|37=00000003|38=20100|39=2|
 41=|44=|48= BARC.L|50=AR|52=20131218-16:33:12|54=1|55=BARC|58=|59=1|
 60=20131218- 16:33:12|10=195

q)select OrderID,MsgType,Commission,CommType
 from fixmsgs where OrderID like "00000003",MsgType in `D`G`F`9
OrderID MsgType Commission CommType

"00000003" D 0.0002 2
"00000003" G 700 3

q)select OrderID, MsgType, CumQty, AvgPx, Commission, CommType,
 CommValue:calcComm'[Commission;CommType;AvgPx;CumQty]
 from order where OrderID like "00000003"
OrderID MsgType CumQty AvgPx Commission CommType CommValue
--
"00000003" G 20100 253.8855 700 3 700

An Order Cancel Request (MsgType F) indicates the cancellation of any outstanding unfilled order quantity. It can be rejected with an Order Cancel Reject (MsgType 9). Along with the order cancel message we should get an Execution Report to confirm the cancellation, with OrdStatus 4 to indicate the order is cancelled. As such this may be sufficient to indicate to end users a cancellation, with the Order Cancel Request and Order Cancel Reject omitted from the Order State logic. For this example we upsert only the MsgType and AmendTime from the cancel messages.

updCancelOrder:{[t;x]
 x:update AmendTime:TransactTime from x;
 t upsert `OrderID xkey select OrderID,MsgType,AmendTime from x; }

When the order is cancelled we receive the following FIX message to request a cancel. The order table shows an order that is not fully filled, but cancelled with nothing left to fill.

8=FIX.4.4|9=178|35=F|1=accountC|6=25.3156|
 11=0000004|12=|13=|14=12500|15=EUR| 17=100000018|19=|
 21=3|29=1|30=XPAR|31=0|32=0|151=2500|37=00000004|38=15000|39 =|
 41=|44=|48=EDF.PA|50=CD|52=20131218-13:33:11|54=1|55=EDF|58=|59=1|
 60=20131218-13:33:11|10=206

q)select OrderID,MsgType,OrdStatus,OrderQty,CumQty
 from order where MsgType=`F
OrderID MsgType OrdStatus OrderQty CumQty
--
"00000004" F 1 15000 12500

The execution report should follow the cancel request to confirm the order has been cancelled and update the status of the order. The confirmation updates the OrdStatus and changes the LeavesQty to reflect the cancellation. We will see how to handle the execution report in the next section.

8=FIX.4.4|9=178|35=8|1=accountC|6=25.3156|
 11=0000004|12=|13=|14=12500|15=EUR| 17=100000018|19=|
 21=3|29=1|30=XPAR|31=0|32=0|151=2500|37=00000004|38=15000|39 =4|
 41=|44=|48=EDF.PA|50=CD|52=20131218- 13:33:11|54=1|55=EDF|58=|59=1|
 60=20131218-13:33:11|151=0|10=210

q)select OrderID,MsgType,OrdStatus,OrderQty,CumQty,LeavesQty
 from order where MsgType=`F
OrderID MsgType OrdStatus OrderQty CumQty LeavesQty
--
"00000004" 8 4 15000 12500 0

Execution reports¶

Execution reports (MsgType 8) are sent every time there is a change in the state of the order. We are only interested in certain fields from execution messages. In our case we want to update OrderID, MsgType, OrdStatus, LastQty, LastPx, AvgPx, CumQty, LeavesQty and LastMkt in the order table. AvgPx, CumQty and LeavesQty are derived columns, giving the latest information for the full order. They should be calculated by the OMS and upserted straight into the order state. The LastQty contains the quantity executed on the last fill, and LastPx the price of the last fill. It is important to always take the latest OrdStatus from the execution messages, this ensures the order state always reflects the current state of the order.

updExecOrder:{[t;x]
 t upsert select OrderID, MsgType, OrdStatus, LastQty, LastPx, AvgPx,
 CumQty, LeavesQty, LastMkt from x; }

The following messages show all the execution reports received for one order. The first message is a confirmation of the new order and sets the OrdStatus to 0. The subsequent messages show each fill on the order. The OrdStatus is set to 1 for each fill until order is complete, when we receive an OrdStatus of 2.

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=0|
 11=0000001|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=10000|37=00000001|38=10000|39=0|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:00|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:00|10=185

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=0|
 11=0000001|12=0.0002|13=2|14=|15=GBp|17=|19=|
 21=|29=|30=|31=|32=|151=10000|37=00000001|38=10000|39=0|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:03|54=1|55=VOD|58=|59=1|
 q60=20131218-09:01:03|10=185

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.5|
 11=0000001|12=|13=|14=1500|15=GBp|17=100000001|19=|
 21=1|29=1|30=XLON|31=229.5|32=1500|151=8500|37=00000001|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:11|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:11|10=209

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6125|
 11=0000001|12=|13=|14=6000|15=GBp|17=100000002|19=|
 21=1|29=1|30=XLON|31=229.65|32=4500|151=4000|37=00000001|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:13|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:13|10=213

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6353846|
 11=0000001|12=|13=|14=6500|15=GBp|17=1##|19=|
 21=1|29=1|30=XLON|31=229.91|32=500|151=3500|37=0000 0001|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:14|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:14|10=215

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.7496933|
 11=0000001|12=|13=|14=8150|15=GBp|17=100000004|19=|
 21=1|29=1|30=XLON|31=230.2|32=1650|151=1850|37=00000001|38=10000|39=1|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:15|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:15|10=215

8=FIX.4.4|9=178|35=8|49=A|56=B|1=accountA|6=229.6295|
 11=0000001|12=|13=|14=10000|15=GBp|17=100000005|19=|
 21=1|29=1|30=XLON|31=229.1|32=1850|151=0|37=00000001|38=10000|39=2|
 41=|44=|48=VOD.L|50=AB|52=20131218-09:01:46|54=1|55=VOD|58=|59=1|
 60=20131218-09:01:46|10=210

The final table shows this order (OrderID "00000001") as fully filled. We can also see the cancelled order ("00000004") reflected with OrdStatus 4. The order we amended ("00000003") shows an amended commission value of 700.

q)select OrderID, SecurityID, Side, MsgType, OrdStatus, OrderQty,
 CumQty, AvgPx, CommValue:calcComm'[Commission;CommType;AvgPx;CumQty]
 from order
OrderID SecurityID Side MsgType OrdStatus OrderQty CumQty AvgPx CommValue

"00000001" VOD.L 1 8 2 10000 10000 229.6295 459.259
"00000002" RIO.L 2 8 2 4000 400 3253.537 260.283
"00000003" BARC.L 1 G 2 20100 20100 253.8855 700
"00000004" EDF.PA 1 8 4 15000 12500 25.3156 63.289
"00000005" VOD.L 2 8 2 3130 3130 229.7559 143.8272

Conclusion¶

This paper has provided a guide to working with FIX messages in kdb+, focusing primarily on capturing messages from an OMS. We focused on some key FIX fields to provide an understanding of the valid entries and an insight into how they should be handled.

fixwiki.org/fixwiki
for a comprehensive list of all fields for each FIX version

It is an essential requirement to be able to view the current and final state of each order received from the OMS. We provided an example to show how to generate an order state. This process can be extended to also derive the latest execution state. Additional fields need to be extracted to identity the execution type, amendments, cancellations etc, similar to the order state. An execution state enables complex analytics, including risk benchmarking and transaction cost analysis to be computed efficiently on every execution.

All tests were run using kdb+ version 3.1 (2013.12.27)

 PDF

Author¶

Damien Barker is a financial engineer who has worked as a consultant for some of the world's largest financial institutions. Based in London, Damien is currently working on trading and analytics application at a US investment bank.

 Back to top

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Kx and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of FD Technologies plc.

 Made with

 Material for MkDocs

