
kx
Technical Whitepaper

Java API for kdb+

Date May 2018

Author Peter Lyness joined First Derivatives as a software
engineer in 2015. During this time he has implemented
a number of Java-based technical solutions for clients,
including kdb+ interface logic for upstream static and
real time data feeds.

Contents

Java API for kdb+ .. 3
API overview ... 4
Models and type mapping ... 7
Practical use-case examples .. 12
Connecting to a kdb+ process .. 13
Extracting data from returned objects .. 16
Creating and passing data objects ... 19
Reconnecting to a q process automatically .. 22
Kdb+ tickerplant overview ... 23
Tickerplant subscription .. 26
Tickerplant publishing .. 29
Connecting from kdb+ to a Java process ... 32
Conclusion .. 35

2

Java API for kdb+ kx

Java API for kdb+

The Java programming language has been consistently popular for two decades, and is
important in many development environments. Its longevity, and the compatibility of
code between versions and operating systems, leaves the landscape of Java applications
in many industries very much divided between new offerings and long-established legacy
code.

Financial technology is no exception. Competition in this risk-averse domain drives it to
push against boundaries. Production systems inevitably mix contemporary and legacy
code. Because of this, developers need tools for communication and integration.
Implementation risks must be kept to a strict minimum. Kx technology is well-equipped
for this issue. By design kdb+’s communication with external processes is kept simple,
and reinforced with interface libraries for other languages.

The Java API for kdb+ is a Java library. It fits easily in any Java application as an interface
to kdb+ processes. As with any API, potential use cases are many. To introduce kdb+
gradually into a wider system, such an interface is essential for any interaction with Java
processes, upstream or downstream. The straightforward implementation keeps changes
to legacy code lightweight, reducing the risk of wider system issues arising as kdb+
processes are introduced.

This paper illustrates how the Java API for kdb+ can be used to enable a Java program
to interact with a kdb+ process. It first explores the API itself: how it is structured, and
how it might be included in a development project. Examples are then provided for core
use cases for the API in a standard setup. Particular consideration is given to how the
API facilitates subscription and publication to a kdb+ tickerplant process, a core
component of any kdb+ tick-capture system.

The examples presented here form a set of practical templates complementary to the
primary source of information1 on code.kx.com. These templates can be combined and
adapted to apply kdb+ across a broad range of problem domains. They are available on
GitHub2.

1. http://code.kx.com/q/interfaces/java-client-for-q

2. https://github.com/kxcontrib/java-for-kdb-examples

3

Java API for kdb+ kx

http://code.kx.com/q/interfaces/java-client-for-q
https://github.com/kxcontrib/java-for-kdb-examples

API overview

The API is contained in a single source file3 on GitHub. Inclusion in a development project
is, therefore, a straightforward matter of including the file with other source code under
the package kx, and ensuring it is properly imported and referenced by other classes. If
preferred, it can be compiled separately into a class or JAR file to be included in the
classpath for use as an external library or uploaded to a local repository for build
integration.

As the API is provided as source, it is perfectly possible to customize code to meet specific
requirements. However, without prior knowledge of how the interactions work, this is
not advised unless the solution to these requirements or issues are known. It is also
possible, and in some contexts encouraged, to wrap the functionality of this class within
a model suitable for your framework. An example might be the open-source qJava library4.
Although it is not compatible with the most recent kdb+ version at the time of writing,
it shows how to use c.java as a core over which an object-oriented framework of q types
and functionality has been applied.

The source file is structured as a single outer class, c. Within it, a number of constants
and inner classes together model an environment for sending and receiving data from a
kdb+ process. This section explores the fundamentals of the class to provide context and
understanding of practical use-cases for the API.

Connection and interface logic
The highly-recommended means of connecting to a kdb+ process using the API is through
instantiation of the c object itself. Three constructors provide for this purpose:

public c(String host,int port,String usernamepassword)
public c(String host,int port,String usernamepassword,boolean useTLS)
public c(String host,int port)

These constructors are straightforward to use. The host and port specify a socket-object
connection, with the username/password string serialized and passed to the remote
instance for authorization. The core logic is the same for all; the host/port-only constructor
attempts to retrieve the user string from the Java properties, and the constructor with the

3. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java

4. https://github.com/exxeleron/qJava

4

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java
https://github.com/exxeleron/qJava

useTLS boolean will, when flagged true, attempt to use an SSL socket instead of an ordinary
socket.

It is also possible to set up the object to accept incoming connections from kdb+ processes
rather than just making them. There are two constructors which, when passed a server
socket reference, will allow a q session to establish a handle against the c object:

public c(ServerSocket s)
public c(ServerSocket s,IAuthenticate a)

IAuthenticate is an interface within the c class that can be implemented to emulate
kdb+ server-side authentication, allowing the establishment of authentication rules
similar to that which might be done through the kdb+ function .z.pw5.

Both of these constructor families represent two ‘modes’ in which the c object can be
instantiated. The first, and ultimately most widely used, is for making connections to
kdb+ processes, which naturally would be used for queries, subscriptions and any task
that requires the reception of or sending of data to said processes. The second, which sees
Java act as the server, would see utility in management and aggregation of kdb+ clients,
perhaps as a data sink or an intermediary interface for another technology.

Interactions between Java and kdb+ through these connections are largely handled by
what might be called the ‘k’ family of methods in the c class. There are thirteen combined
methods and overloads that fall under this group. They can be divided roughly into four
groups:

Synchronous query methods

public Object k(String expr)
public Object k(String s,Object x)
public Object k(String s,Object x,Object y)
public void k(String s,Object x,Object y,Object z)
public synchronized Object k(Object x)

These methods are responsible for handling synchronous queries to a kdb+ process. The
String parameter will represent either the entire q expression or the function name; in
the case of the latter, the Object parameters may be used to pass values into that function.
In all instances, the String/Object combinations are merged into a single object to be
passed to the synchronized k(Object) method.

5. http://code.kx.com/q/ref/dotz/#zpw-validate-user

5

Java API for kdb+ kx

http://code.kx.com/q/ref/dotz/#zpw-validate-user

Asynchronous query methods

public void ks(String expr)
public void ks(String s,Object x)
public void ks(String s,Object x,Object y)
public void ks(String s,Object x,Object y,Object z)
public void ks(Object obj)

These methods are responsible for handling asynchronous queries to a kdb+ process.
They operate logically in a similar manner to the synchronous query method, with the
exception that they are, of course, void methods in that they neither wait for nor return
any response from the process.

Incoming message method

public Object k()

This method waits on the class input stream and will deserialize the next incoming kdb+
message. It is used by the c synchronous methods in order to capture and return response
objects, and is also used in server-oriented applications in order to capture incoming
messages from client processes.

Response message methods

public void kr(Object obj)
public void ke(String text)

These methods are typically used in server-oriented applications to serialize and write
response messages to the class output stream. kr(Object) will act much like any
synchronous response, while ke(String) will format and output an error message.

The use of these constructors and methods will be treated in more practical detail through
the use-case examples below.

6

Java API for kdb+ kx

Models and type mapping

The majority of q data types are represented in the API through mapping to standard
Java objects. This is best seen in the method c.r()6, which reads bytes from an incoming
message and converts those bytes into representative Java types.

A full list of Java type mappings7 is on code.kx.com.

Basic types
The method c.r() deserializes a stream of bytes within a certain range to point to further
methods which return the appropriate typed object. These are largely self-explanatory,
such as booleans and integer primitives mapping directly to one another, or q UUIDs
mapping to java.util.UUID. There are some types with caveats, however:

• The kdb+ float type (9) corresponds to java.lang.Double and not java.lang.Float,
which corresponds to the kdb+ real type (8).

• Java strings map to the kdb+ symbol type (11). In terms of reading or passing in data,
this means that passing "String" from Java to kdb would result in ̀ String. Conversely,
passing "String" (type 10 list) from kdb to Java would result in a six-index character
array.

Time-based types
Of particular interest is how the mapping handles temporal types, of which there are
eight:

noteJava typeidq type

This Java class stores times as milliseconds passed since
the Unix epoch. Therefore, like the q datetime, it can
represent time information accurate to the millisecond.
(This despite the default output format of the class).

java.util.Date15datetime

While this Java class extends the java.util date object it
is used specifically for the date type as it restricts usage
and output of time data.

java.sql.Date14date

6. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L709

7. http://code.kx.com/q/interfaces/java-client-for-q/#type-mapping

7

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L709
http://code.kx.com/q/interfaces/java-client-for-q/#type-mapping

noteJava typeidq type

This also extends java.util.Date, restricting usage and
output of date data this time.

java.sql.Time19time

This comes yet again from the base date class, extended
this time to include nanoseconds storage (which is done
separately from the underlying date object, which only
has millisecond accuracy). This makes it directly
compatible with the q timestamp type.

java.sql.Timestamp12timestamp

inner class c.Month813month

inner class c.Timespan916timespan

inner class c.Minute1017minute

inner class c.Second1118second

When manipulating date, time and datetime data from kdb+ it is important to note that
while java.sql.Date and Time extend java.util.Date, and can be assigned to a
java.util reference, that many of the methods from the original date class are overridden
in these to throw exceptions if invoked. For example, in order to create a single date object
for two separate SQL Date and Time objects, a java.util.Date object should be
instantiated by adding the getTime() values from both SQL objects:

//Date value = datetime - time
java.sql.Date sqlDate = (java.sql.Date)qconn.k(".z.d");
// Time value - datetime - date
java.sql.Time sqlTime = (java.sql.Time)qconn.k(".z.t");
java.util.Date utilDate= new java.util.Date(sqlDate.getTime()+sqlTime.getTime());

The four time types represented by inner classes are somewhat less prevalent than those
modeled by Date and its subclasses. These classes exist as comparable models due to a
lack of a clear representative counterpart in the standard Java library, although their
modeling is for the large part fairly simple and the values can be easily implemented or
extracted.

Dictionaries and tables
Kdb+ dictionaries (type 99) and tables (type 98) are represented by the internal classes
Dict and Flip respectively. The makeup of these models is simple but effective, and useful
in determining how best to manipulate them.

8. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L300
9. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L376
10. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L326
11. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L351

8

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L300
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L376
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L326
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L351

The Dict class12 consists of two public java.lang.Object fields (x for keys, y for values)
and a basic constructor, which allows any of the represented data types to be used.
However, while from a Java perspective any object could be passed to the constructor,
dictionaries in q are always structured as two lists. This means that if the object is being
created to pass to a q session directly, the Object fields in a Dict object should be assigned
arrays of a given representative type, as passing in an atomic object will result in an error.

For example, the first of the following dictionary instantiation is legal with regards to the
Java object, but because the pairs being passed in are atomic, it would signal a type error
in q. Instead, the second example should be used, and can be seen as mirroring the practice
of enlisting single values in q:

new c.Dict("Key","Value"); // not q-compatible
new c.Dict(new String[] {"Key"}, new String[] {"Value"}); // q-compatible

As the logical extension of that, in order to represent a list as a single key or pair,
multi-dimensional arrays should be used:

new c.Dict(new String[] {"Key"}, new String[][] {{"Value1","Value2","Value3"}});

Flip (table) objects13 consist of a String array for columns, an Object array for values, a
constructor and a method for returning the Object array for a given column. The
constructor takes a dictionary as its parameter, which is useful for the conversion of one
to the other should the dictionary in question consist of single symbol keys. Of course,
with the fields of the class being public, the columns and values can be assigned manually.

Keyed tables in q are dictionaries in terms of type, and therefore will be represented as a
Dict object in Java. The method td(Object)14 will create a Flip object from a keyed table
Dict, but will remove its keyed nature in the process.

GUID
The globally unique identifier (GUID) type was introduced into kdb+ with version 3.0
for the purpose of storing arbitrary 16-byte values, such as transaction IDs. Storing such
values in this form allows for savings in tasks such as memory and storage usage, as well
as improved performance in certain operations such as table lookups when compared
with standard types such as Strings.

12. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L427

13. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L440

14. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L1396

9

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L427
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L440
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L1396

Java has its own unique identifier type: java.util.UUID (universally unique identifier).
In the API the kdb+ GUID type maps directly to this object through the extraction and
provision of its most and least significant long values. Otherwise, the only high-level
difference in how this type can be used when compared to other types handled by the
API is that a RuntimeException will be thrown if an attempt is made to serialize and pass
a UUID object to a kdb+ instance with a version lower than 3.0.

More information on these identifier types can be found in the Kx documentation15 as
well as the core Java documentation16.

Null types
Definitions for q null type representations in Java are held in the static Object array NULL,
with index positions representing the q type.

public static Object[] NULL={
null,
new Boolean(false),
new UUID(0,0),
null,
new Byte((byte)0),
new Short(Short.MIN_VALUE),
new Integer(ni),
new Long(nj),
new Float(nf),
new Double(nf),
new Character(' '),
"",
new Timestamp(nj),
new Month(ni)
,new Date(nj),
new java.util.Date(nj),
new Timespan(nj),
new Minute(ni),
new Second(ni),
new Time(nj)

};

Of note are the integer types, as the null values for these are represented by the minimum
possible value of each of the Java primitives. Shorts, for example, have a minimum value
of -372768 in Java, but a minimum value of -372767 in q. The extra negative value in Java
can therefore be used to signal a null value to the q connection logic in the c class.

15. http://code.kx.com/q/ref/datatypes/#guid

16. https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

10

Java API for kdb+ kx

http://code.kx.com/q/ref/datatypes/#guid
https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Float and real nulls are both represented in Java by the java.lang.Double.NaN constant.
Time values, essentially being longs under the bonnet, are represented by the same null
value as longs in Java. Month, minute, second and timespan, each with custom model
classes, use the same null value as ints.

The method c.qn(Object)17 can assist with checking and identifying null value
representations, as it will check both the Object type and value against the NULL list.

It is worth noting that infinity types are not explicitly mapped in Java, although kdb+
float and real infinities will correspond with the infinity constants in java.lang.Double
and java.lang.Float respectively.

Exceptions
KException18 is the single custom exception defined and thrown by the API. It is fairly
safe to assume that a thrown KException denotes a q error signal, which will be included
in the exception message when thrown.

Other common exceptions thrown in the API logic include:

IOException

Denotes issues with connecting to the kdb+ process. It is also thrown by c.java
itself for such issues as authentication.

RuntimeException
Thrown when certain type implementations are attempted on kdb+ versions prior
to their introduction (such as the GUIDs prior to kdb+ 3.0)

UnsupportedEncodingException

It is possible, through the method setEncoding, to specify character encoding
different to the default (ISO-859-1). This exception will be thrown commonly if the
default is changed to a charset format not implemented on the target Java platform.

17. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L1355

18. https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L457

11

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L1355
https://github.com/KxSystems/javakdb/blob/master/src/kx/c.java#L457

Practical use-case examples

The examples that follow consist of common practical tasks that a Java developer might
be expected to carry out when interfacing with kdb+. The inline examples take the form
of extracted sections of key logic and output, and are available as example classes from
the KxSystems/javakdb19 repository for use as starting points or templates.

These examples assume, at minimum, a standard installation of 32-bit kdb+ on the local
system, and a suitable Java development environment.

19. https://github.com/KxSystems/javakdb/tree/master/src/kx/examples

12

Java API for kdb+ kx

https://github.com/KxSystems/javakdb/tree/master/src/kx/examples

Connecting to a kdb+ process

Starting a local q server
During development, it can be helpful to start a basic q server to which a Java process
can connect. This requires the opening of a port, for which there are two basic methods:

Example: Starting q with –p parameter

$ q -p 10000

q)\p // command to show the port that q is listening on
10000i

Example: Using the \p system command

$ q

q)\p 10000 // set the listening port to 10000
q)\p
10000i

To close the port, it should be set to its default value of 0 i.e. \p 0.

Setting up a q session in this manner will allow other processes to open handles to it on
the specified port. The remainder of the examples in this paper assume an opened q
session listening on port 10000, with no further configuration unless otherwise specified.

Opening a socket connection
As discussed in the previous section, the c class establishes connections via its constructors.

For connecting to a listening q process, one useful mechanism might be to create a factory
class with a method that returns a connected c object based on what is passed to it. This
way, any number of credential combinations can be set whilst allowing the creation of
multiple connections, say for reconnection purposes:

13

Java API for kdb+ kx

Example: QConnectionFactory.java

public QConnectionFactory(String host, int port,
String username, String password, boolean useTLS) {

this.host=host;
this.port=port;
this.username=username;
this.password=password;
this.useTLS=useTLS;

}

//[…]

public c getQConnection() throws KException, IOException {
return new c(host,port,username+":"+password,useTLS);

}

These constructors will always return a c object connected to the target session, and
failure to do so will result in a thrown exception; IOException will denote the port not
being open or available, and a KException will denote something wrong with the q process
itself (such as 'access for incorrect or incomplete credentials).

For the remaining examples, connections will be made using a custom
QConnectionFactory object returned from a static method getDefault(), which will
instantiate the object with the host localhost and the port 10000:

Example: QConnectionFactory.java

public static QConnectionFactory getDefault() {
return new QConnectionFactory("localhost", 10000);

}

Connection objects created using this will be given the variable name qConnection unless
otherwise stated.

Running queries using k methods
Queries can be made using the ‘k’ family of methods in the c class. For synchronous
queries, that might be used to retrieve data (or, more generally, to halt execution of the
java process until a response is received), the k methods with parameter combinations
of strings and objects might be used. For asynchronous queries, as might be used in a
feed-handler process to push data to a tickerplant, the ks methods would be used.

The methods k(), kr() and ke() would not see explicit use in the querying of a server q
process, but are more significant when the Java process acts as the server, as will be
touched upon below.

14

Java API for kdb+ kx

The following examples demonstrate some of the means by which these synchronous
and asynchronous queries may be called:

Example: SimpleQueryExamples.java

//Object for storing the results of these queries
Object result = null;

//Basic synchronous q expression
result = qConnection.k("{x+y}\[4;3\]");
System.out.println(result.toString());

//parameterised synchronous query
result = qConnection.k("{x+y}",4,3); //Note autoboxing!
System.out.println(result.toString());

//asynchronous assignment of function
qConnection.ks("jFunc:{x-y+z}");

//synchronous calling of that function
result = qConnection.k("jFunc",10,4,3);
System.out.println(result);

//asynchronous error - note no exception can be returned, so be careful!
qConnection.ks("{x+y}\[4;3;2\]");

//Always close resources\!
qConnection.close();

15

Java API for kdb+ kx

Extracting data from returned objects

Note on internal variables and casting
The relationship between the kdb+ types and their Java counterparts has been discussed
in the previous section. From a practical perspective, it is important to note that almost
all objects and fields that might return from a given synchronous query will be of type
Object, and will therefore more often than not require casting in order to be manipulated
properly. Care must be taken, therefore, to ensure that the types that can be returned
from a given query are known and handled appropriately so as to avoid unwanted
exceptions.

The exception to this might be the column names of a flip object (once cast itself) held
in the field flip.x. This field is already typed as String[], as column names must always
be symbols in q.

Kdb+ types that map to primitives (such as int) can be passed in Java to a k method as a
primitive thanks to autoboxing20, but will always be returned as the corresponding wrapper
object (such as Integer).

Extracting atoms from a list
Lists will always be returned as an array of the given list type, or as Object[] if the list
is generic. Extraction of atomic values from a list, therefore, is as simple as casting the
return object to the appropriate array type and accessing the desired index:

Example: ExtractionExamples.java

//Get a list from the q session
Object result = qConnection.k("(1 2 3 4)");

//Cast the returned Object into long[], and retrieve the desired result.
long[] castList = ((long[]) result);
long extractedAtom = castList[0];
System.out.println(extractedAtom);

If the type of list is unknown, the method c.t(Object) can be used to derive the q type
of the object, and theoretically could be useful in further casting efforts.

20. https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

16

Java API for kdb+ kx

https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Extracting lists from a nested list
Accessing a list from a nested list is similar to accessing a value from any list. Here there
are two casts required: a cast to Object[] for the parent list and then again to the
appropriate typed array for the extracted list:

Example: ExtractionExamples.java

// Start by casting the returned Object into Object[]
Object[] resultArray = (Object[]) qConnection.k("((1 2 3 4); (1 2))");

//Iterate through the Object array
for (Object resultElement : resultArray) {

//Retrieve each list and cast to appropriate type
long[] elementArray = (long[]) resultElement;

//Iterate through these arrays to access values.
for(long elementAtom : elementArray) {
System.out.println(elementAtom);

}
}

Working with dictionaries
The Dict inner class is used for all returned objects of q type dictionary (and therefore,
by extension, keyed tables). Key values are stored in the field Dict.x, and values in Dict.y,
both of which will generally be castable as an array.

Aside from matching the index positions of x and y, there is no intrinsic key-value pairing
between the two, meaning that alteration of either of the array structures can compromise
the key-value relationship. The following example illustrates operations that might be
performed on a returned dictionary object:

Example: ExtractionExamples.java

//Retrieve Dictionary
c.Dict dict = (c.Dict) qConnection.k("`a`b`c!((1 2 3);\"Second\"; (`x`y`z))");
//Retrieve keys from dictionary
String[] keys = (String[]) dict.x;
System.out.println(Arrays.toString(keys));
//Retrieve values
Object[] values = (Object[]) dict.y;
//These can then be worked with similarly to nested lists
long[] valuesLong = (long[]) values[0];
//[…]

17

Java API for kdb+ kx

Working with tables
The inner class c.Flip used to represent tables operates in a similar manner to c.Dict.
The primary difference, as previously mentioned, is that Flip.x is already typed as
String[], while Flip.y will still require casting. The following example shows how the
data from a returned Flip object might be used to print the table to console:

Example: ExtractionExamples.java

// (try to load trade.q first for this (create a table manually if not possible)
qConnection.ks("system \"l trade.q\"");
//Retrieve table
c.Flip flip = (c.Flip) qConnection.k("select from trade where sym = `a");

//Retrieve columns and data
String[] columnNames = flip.x;
Object[] columnData = flip.y;
//Extract row data into typed arrays
java.sql.Timestamp[] time = (java.sql.Timestamp[]) columnData[0];
String[] sym = (String[]) columnData[1];
double[] price = (double[]) columnData[2];
int[] size = (int[]) columnData[3];
int rows = time.length;

//Print the table now - columns first:
for (String columnName : columnNames)
{
System.out.print(columnName + "\t\t\t");

}
System.out.println("\n---");
//Then rows:
for (int i = 0; i < rows; i++)
{
System.out.print(time[i]+"\t"+sym[i]+"\t\t\t"+price[i]+"\t\t\t"+size[i]+"\n");

}

18

Java API for kdb+ kx

Creating and passing data objects

When passing objects to q via the c class, there is less emphasis on how a given object is
created. Rather, such an operation is subject to the common pitfalls associated with
passing values to a q expression; those of type and rank.

The k family of methods, regardless of its return protocol, will take either the String of a
q expression or the String of a q operator or function, complemented by Object parameters.
Given the nature of q as an interpreted language, all of these are serialized and sent to
the q session with little regard for logical correctness.

It is important, therefore, that any expressions passed to a query method are syntactically
accurate and refer to variables that actually exist in the target session. It is also important
that any passed objects are mapped to a relevant q type, and function within the context
that they are sent. KException messages to look out for while implementing these
operations are 'type and 'rank, as these will generally denote basic type and rank issues
respectively.

Creating and passing a simple list
The following method might be applied to all direct type mappings in the API; for simple
lists (lists in which all elements are of the same type), it is enough to pass a Java array of
the appropriate type.

The following example invokes the q set function, which allows for the passing of a
variable name as well as an object with which the variable might be set:

Example: CreateAndSendExamples.java

//Create typed array
int[] simpleList = {10, 20, 30};
//Pass array to q using set function.
qConnection.k("set", "simpleList", simpleList)

Creating and passing a mixed list

Mixed lists should always be passed to kdb+ through an Object array, Object[]. This
array may then hold any number of mapped types, including, if appropriate, other typed
or Object arrays:

19

Java API for kdb+ kx

Example: CreateAndSendExamples.java

//Create generic Object array.
Object[] mixedList = {new String[] {"first", "second"}, new double[] {1.0, 2.0}};
//Pass to q in the same way as a simple list.
qConnection.k("set", "mixedList", mixedList);

Creating and passing dictionaries
c.Dict objects are instantiated by setting its x and y objects in the constructor, and these
objects should always be arrays. Once created, the Dict can be passed to kdb+ like any
other object:

Example: CreateAndSendExamples.java

//Create keys and values
Object[] keys = {"a", "b", "c"};
int[] values = {100, 200, 300};
//Set in dict constructor
c.Dict dict = new c.Dict(keys, values);
//Set in q session
qConnection.k("set","dict",dict);

Creating and passing tables
c.Flip objects are created slightly differently; it is best to instantiate these by passing a
c.Dict object into the constructor. This is because tables are essentially collections of
dictionaries in kdb+, and therefore using this constructor helps ensure that the Flip object
is set up correctly.

It is worth noting that for this method to work correctly, the passed Dict object must use
String keys, as these will map into the Flip object’s typed String[] columns:

Example: CreateAndSendExamples.java

//Create rows and columns
int[] values = {1, 2, 3};
Object[] data = new Object[] {values};
String[] columnNames = new String[] {"column"};
//Wrap values in dictionary
c.Dict dict = new c.Dict(columnNames, data);
//Create table using dict
c.Flip table = new c.Flip(dict);
//Send to q using 'insert' method
qConnection.ks("insert", "t1", table);

20

Java API for kdb+ kx

Creating and passing GUID objects
Globally universal identifier objects are represented in Java by java.util.UUID objects,
and are passed to kdb+ in an identical manner as other basic types. The Java object has
a useful static method for generating random identifiers, which further streamlines this
process and can see utility in some use cases where only a certain number of arbitrary
identifiers are required:

Example: CreateAndSendExamples.java

//Generate random UUID object
java.util.UUID uuid = java.util.UUID.randomUUID();
System.out.println(uuid.toString());

//Pass object to q using set function
qConnection.k("set","randomGUID",uuidj);
System.out.println(qConnection.k("randomGUID").toString());

Of course, it should be remembered that kdb+ version 3.0 or higher is required to work
with GUIDs, and running the above code connected to an older version will cause a
RuntimeException to be thrown.

21

Java API for kdb+ kx

Reconnecting to a q process automatically

Requirements will often dictate that while q processes will need to be bounced (such as
for End-of-Day processing), that a Java process will need to be able to handle loss and
reacquisition of said processes without being restarted itself. A simple example might be
a graphical user interface, where the forced shutdown of the entire application due to a
dropped connection, or the lack of ability to reconnect, would be very poor design indeed.

Use of patterns such as factories can help with the task of setting up a reconnection
mechanism, as it allows for the simple creation of a preconfigured object. For c Objects,
given that they connect on instantiation, means that a connection can be re-established
simply by calling the relevant factory method.

In order to handle longer periods of potential downtime, either loops or recursion should
be used. The danger with recursive methodology here is that, given an extended without
a timeout limitation, there is a risk of overflowing the method-call stack, as each failed
attempt will invoke a new method onto the stack.

For mechanisms that may need to wait indefinitely, it might be considered safer to use
an indefinite while-loop that makes use of catch blocks, continue and break statements.
This averts the danger of StackOverflowError occurring and is easily modified to
implement a maximum number of tries:

Example: ReconnectionExample.java

//initiate reconnect loop (possibly within a catch block).
while (true) {
try {
System.err.println("Connection failed - retrying..");
//Wait a bit before trying to reconnect
Thread.sleep(5000);
qConnection = qConnFactory.getQConnection();
System.out.println("Connection re-established! Resuming..");
//Exit loop
break;

} catch (IOException | KException e1) {
//resume loop if it fails
continue;

}
…

}

22

Java API for kdb+ kx

Kdb+ tickerplant overview

A kdb+ tickerplant is a q process specifically designed to handle incoming high-frequency
data feeds from publishing process. Its primary responsibility is the management of
subscription requests and the fast publication of data to subscribers. The following diagram
illustrates a simple dataflow of a potential kdb+ tick system:

Simple dataflow of a potential kdb+ tick system

23

Java API for kdb+ kx

 Building Real-time Tick Subscribers21 regarding the above vanilla setup

Of interest in this whitepaper are the Java publisher and subscriber processes. As the
kdb+ tick system is very widely used, both of these kinds of processes are highly likely
to come up in development tasks involving kdb+ interfacing.

Test tickerplant and feedhandler setup
To facilitate the testing of Java subscriber processes we can implement example q processes
freely available in the Kx repository. Simulation of a tickerplant can be achieved with
tick.q22; Trade data, using the trade schema defined in sym.q, can then be published to
this tickerplant using the definition for the file feed.q given here:

// q feed.q / with a default port of 5010 and default timer of 1000
// q feed.q -port 10000 / with a default timer of 1000
// q feed.q -port 10000 -t 2000

tph:hopen $[0=count .z.x;5010;"J"$first .Q.opt\[.z.x]`port]
if[not system"t";system"t 1000"]

publishTradeToTickerPlant:{
nRows:first 1?1+til 3;
tph(".u.upd";`trade;(nRows#.z.N;nRows?`IBM`FB`GS`JPM;nRows?150.35;nRows?1000));
}

.z.ts:{
publishTradeToTickerPlant[];
}

The tickerplant and feed handlers can then be started by executing the following
commands consecutively:

$ q tick.q sym -t 2000
$ q feed.q

Once the feedhandler is publishing to the tickerplant, processes can connect to it in order
either to publish or subscribe to it.

It should be noted that in this example and below we are using a Java process to subscribe
to a tickerplant being fed directly by a simulated feed. While we are doing this here in
order to facilitate a simple example setup, in production this is not usually encouraged.
Processes such as Java subscribers would generally connect to derivative kdb+ processes

21. http://code.kx.com/q/wp/building_real_time_tick_subscribers.pdf

22. https://github.com/KxSystems/kdb-tick/blob/master/tick.q

24

Java API for kdb+ kx

http://code.kx.com/q/wp/building_real_time_tick_subscribers.pdf
https://github.com/KxSystems/kdb-tick/blob/master/tick.q

such as chained tickerplants (as in the above diagram), for which standard publishing
and subscription logic should be the same as that covered here.

25

Java API for kdb+ kx

Tickerplant subscription

Extracting the table schema
Typical subscriber processes are required to make an initial subscription request to the
tickerplant in order to receive data. See the publish and subscribe23 cookbook article for
details. This request involves calling the .u.sub function with two parameters. The first
parameter is the table name and the second is a list of symbols for subscription. (Specifying
a backtick in any of the parameters means all tables and/or all symbols).

Example: TickSubscriberExample.java

// Run sub function and store result
Object[] response = (Object[]) qConnection.k(".u.sub[`trade;`]");

If the .u.sub function is called synchronously, the tickerplant will return the table schema.
If subscribing to one table, the returned object will be a generic Object array, with the
table name in object[0] and a c.Flip representation of the schema in object[1]:

Example: TickSubscriberExample.java

// first index is table name
System.out.println("table name: " + response[0]);

// second index is flip object
c.Flip table = (c.Flip) response[1];

// Retrieve column names
String[] columnNames = table.x;
for (int i = 0; i < columnNames.length; i++) {
System.out.printf("Column %d is named %s\n", i, columnNames[i]);

}

If more than one table is being subscribed to, the returned object will be an Object array
consisting of the above object arrays; therefore, in order to retrieve each individual Flip
object, this should be iterated against:

23. http://code.kx.com/q/cookbook/publish-subscribe

26

Java API for kdb+ kx

http://code.kx.com/q/cookbook/publish-subscribe

Example: TickSubscriberExample.java

// Run sub function and store result
Object[] response = (Object[]) qConnection.k(".u.sub[`;`]");

// iterate through Object array
for (Object tableObjectElement : response) {

// From here, it is similar to the one-table schema extraction
Object[] tableData = (Object[]) tableObjectElement;
System.out.println("table name: " + tableData[0]);
c.Flip table = (c.Flip) tableData[1];
String[] columnNames = table.x;
for (int i = 0; i < columnNames.length; i++) {
System.out.printf("Column %d is named %s\n", i, columnNames[i]);

}
}

Subscribing to a tickerplant data feed
Upon calling .u.sub and retrieving the schema, the tickerplant process will start to publish
data to the Java process. The data it sends can be retrieved through the parameter-free
k() method, which will wait for a response and return an Object (a c.Flip of the passed
data) on publication:

Example: TickSubscriberExample.java

while (true) {

//wait on k()
Object response = qConnection.k();

if(response != null) {
Object[] data = (Object[]) response;

//Slightly different.. table is in data[2]\!
c.Flip table = (c.Flip) data[2];
//[…]

}
}

With the data in this form, it can be manipulated in a number of meaningful ways. To
iterate through the columns, c.n can be called on individual flip.y columns in order to
provide a row count:

27

Java API for kdb+ kx

Example: TickSubscriberExample.java

String[] columnNames = table.x;
Object[] columnData = table.y;

//Get row count for looping
int rowCount = c.n(columnData[0]);

//Print out the table!
System.out.printf("%s\t\t\t%s\t%s\t%s\n",

columnNames[0], columnNames[1], columnNames[2], columnNames[3]);
System.out.println("--");
for (int i = 0; i < rowCount; i++) {

//[Printing logic]

}

This mechanism might be then enveloped in an indefinite loop, such as a while(true)
loop. Each iteration waits on the k() method returning published data, which will continue
until one of the contributing processes fails (at which point an exception is caught and
handled appropriately).

28

Java API for kdb+ kx

Tickerplant publishing

Publishing data to a tickerplant is almost always a necessity for a kdb+ feed-handler
process. Java, as a common language of choice for third-party API development
(e.g. Reuters, Bloomberg, MarkIT), is a popular language for feedhandler development,
within which c.java is used to handle the asynchronous invocation of a publishing
function.

Publishing rows
In general, publishing values to a tickerplant will require an asynchronous query much
like the following:

qConnection.ks(".u.upd", "trade", data); //Where data is an Object[]

The parameters for this can be defined as follows:

The update function name (.u.upd)
This is the function executed on the tickerplant which enables the data insertion.
As per the norm with this API, this is passed as a string.

Table name
A String representation of the name of the table that receives the data.

Data
An Object that will form the row(s) to be appended to the table. This parameter is
typically passed as an object array, each index representing a table column.

In order to publish a single row to a tickerplant, typed arrays consisting of single values
might be instantiated. These are then encapsulated in an Object array and passed to the
ks method:

29

Java API for kdb+ kx

Example: TickPublisherExamples.java

//Create typed arrays for holding data
String[] sym = new String[] {"IBM"};
double[] bid = new double[] {100.25};
double[] ask = new double[] {100.26};
int[] bSize = new int[]{1000};
int[] aSize = new int[]{1000};
//Create Object[] for holding typed arrays
Object[] data = new Object[] {sym, bid, ask, bSize, aSize};
//Call .u.upd asynchronously
qConnection.ks(".u.upd", "quote", data);

Publishing multiple rows is then just a case of increased length of each of the typed arrays:

Example: TickPublisherExamples.java

String[] sym = new String[] {"IBM", "GE"};
double[] bid = new double[] {100.25, 120.25};
double[] ask = new double[] {100.26, 120.26};
int[] bSize = new int[]{1000, 2000};
int[] aSize = new int[]{1000, 2000};

In order to maximize tickerplant throughput and efficiency, it is generally recommended
to publish multiple rows in one go.

 whitepaper Kdb+tick Profiling for Throughput Optimization24.

Care has to be taken here to ensure that all typed arrays maintain the same length, as
failure to do so will likely result in a kdb+ type error. Such errors are especially
troublesome when using asynchronous methods, which will not return KExceptions in
the same manner as sync methods! It is also worth noting that the order of the typed
arrays within the object array should match that of the table schema.

Adding a timespan column
It is standard tickerplant functionality to append a timespan column to each row received
from a feed handler if not included with the data passed, which is used to record when
the data was received by the tickerplant. It’s possible for the publisher to create the
timespan column to prevent the tickerplant from adding one:

24. http://code.kx.com/q/wp/kdbtick_profiling_for_throughput_optimization.pdf

30

Java API for kdb+ kx

http://code.kx.com/q/wp/kdbtick_profiling_for_throughput_optimization.pdf

Example: TickPublisherExamples.java

//Timespan can be added here
c.Timespan[] time = new c.Timespan[] {new c.Timespan()};
String[] sym = new String[] {"GS"};
double[] bid = new double[] {100.25};
double[] ask = new double[] {100.26};
int[] bSize = new int[]{1000};
int[] aSize = new int[]{1000};
//Timespan array is then added at beginning of Object array
Object[] data = new Object[] {time, sym, bid, ask, bSize, aSize};
qConnection.ks(".u.upd", "quote", data);

This might be done, for example, to allow the feedhandler to define the time differently
than simply logging the time at which the tickerplant receives the data.

31

Java API for kdb+ kx

Connecting from kdb+ to a Java process

The examples thus far have emphasized interfacing between Java and kdb+ very much
from the perspective of a Java client connecting to a kdb+ server, using the constructors
relevant to this purpose. It is very much possible to reverse these roles using the
c(Serversocket) constructor, which enables a Java process to listen for incoming kdb+
messages on the specified port.

While the use cases for this ‘server’ mode of operation are not as common as they might
be for ‘client’ -mode connections, it is nevertheless available to developers as a means of
implementing communication between Java and kdb+ processes. The following examples
demonstrate the basic mechanisms by which this can be done.

Handling a single connection
To set this up, a c object is instantiated using the ‘server’ mode constructor. This will
listen to the incoming connection of a single kdb+ process:

Example: IncomingConnectionExample.java

//Wait for incoming connection
System.out.println("Waiting for incoming connection on port 5001..");
c incomingConnection = new c(new ServerSocket(5001));

In a manner similar to tickerplant subscription, the method k() (without parameters)
can be used to wait on and listen to any connecting q session. In this example, the object
is retrieved in this fashion and deciphered, either to return an error when passed the
symbol `returnError or to return a message describing what was sent:

32

Java API for kdb+ kx

Example: IncomingConnectionExample.java

while(true) {
//k() method will wait until the kdb+ process sends an object.
Object incoming = incomingConnection.k();
try {
// check the incoming object and return something based on what it is
if (incoming instanceof String && ((String)incoming).equals("returnError")) {
incomingConnection.ke("ReturningError!");

} else if(incoming.getClass().isArray()) {
// if list, use Arrays toString method
incomingConnection.kr("The incoming list values are: " + Arrays.toString((Object[])incoming));

} else {
incomingConnection.kr(("The incoming message was: " + incoming.toString()).toCharArray());

}
} catch(IOException | KException e) {
//return error responses too
incomingConnection.ke(e.getMessage());

}
}

Handling multiple connections
In the above example, the server c object is instantiated with a new ServerSocket being
created in its constructor. This is acceptable in this instance because we cared only about
the handling of one connection.

In general, ServerSocket objects should not be used in this manner, as they are designed
to handle more than a single incoming connection. Instead, the ServerSocket should be
passed as a reference. With the addition of some simple threading, an application capable
of handling messages from multiple q sessions can be created:

33

Java API for kdb+ kx

Example: IncomingConnectionsExample.java

//Create server socket reference beforehand..
ServerSocket serverSocket = new ServerSocket(5001);

//Set up connection loop
while(true) {
//Create c object with reference to server socket
final c incomingConnection = new c(serverSocket);

//Create thread for handling this connection
new Thread(new Runnable() {
@Override
public void run() {
while(true) {
//Logic in this loop is similar to single connection
//[...]

}
}

//Run thread and restart loop.
}).start();

}

This will allow any number of connections to be established, with factors such as
connection limitation and load balancing left up to how the process is implemented. As
in any case where threading is used, take care that such a method does not enable race
conditions or concurrency issues; if necessary, steps can be taken to reduce the risk of
such operations, such as synchronized blocks and methods.

34

Java API for kdb+ kx

Conclusion

This document has covered a variety of topics concerning the mechanics and application
of the c.java interface for kdb+. Of the workings and examples shown, the most common
use case for this interface will be connecting to a q process, executing queries and functions
and managing any result objects. However, this document has also displayed the versatile
nature of c.java as a tool, providing a handful of solutions to a given problem and able
to fulfill server as well as client functions.

The practical examples should also help demonstrate that tasks required as part of a
standard kdb+ toolset can be handled easily from the perspective of both Java developers
interfacing with kdb+ for the first time, or kdb+ developers who are required to venture
into Java development, for example, to help complete development of a feed handler. The
benefit of such interfaces is felt keenly through the common role of these developers in
helping to reconcile longstanding applications with contemporary technologies, often to
the benefit of both.

35

Java API for kdb+ kx

	Java API for kdb+
	API overview
	Models and type mapping
	Practical use-case examples
	Connecting to a kdb+ process
	Extracting data from returned objects
	Creating and passing data objects
	Reconnecting to a q process automatically
	Kdb+ tickerplant overview
	Tickerplant subscription
	Tickerplant publishing
	Connecting from kdb+ to a Java process
	Conclusion

