

 Skip to content

 [image: logo]

 Kdb+ and q documentation

 Intraday writedown solutions | White papers | q and kdb+ documentation

 Initializing search

 Ask a question

 	

 Home

	

 kdb+ and q

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

	

 Language

	

 Database

	

 Developing

	

 Architecture

	

 Help

 [image: logo]

 Kdb+ and q documentation

 	

 Home

	

 kdb+ and q

 kdb+ and q

 	

 About

	

 Reference card

	

 Developer tools

	

 Interfaces

 Interfaces

 	

 KX libraries

	

 Bloomberg

	

 C/C++

 C/C++

 	

 Quick guide

	

 API reference

	

 C API for kdb+ (WP)

	

 Using C/C++ functions

	

 Excel

	

 FIX messaging (WP)

	

 GPUs

	

 Lightning tickerplants (WP)

	

 Matlab

	

 ODBC

	

 ODBC3

	

 R

	

 Scala

	

 Open source

	

 Machine learning

	

 Using kdb+ in the cloud

 Using kdb+ in the cloud

 	

 About

	

 Amazon Web Services

 Amazon Web Services

 	

 Reference architecture

	

 Amazon EC2 & Storage Services

 Amazon EC2 & Storage Services

 	

 Migrating a kdb+ HDB to Amazon EC2

	

 Elastic Block Store (EBS)

	

 EFS (NFS)

	

 Amazon Storage Gateway

	

 FSx for Lustre

	

 AWS Lambda

	

 Microsoft Azure

 Microsoft Azure

 	

 Reference architecture

	

 Google Cloud

 Google Cloud

 	

 Reference architecture

	

 Auto Scaling (WP)

 Auto Scaling (WP)

 	

 About

	

 Amazon Web Services

	

 Realtime data cluster

	

 Costs and risks

	

 Surveillance in the Cloud (WP)

	

 Other file systems

 Other file systems

 	

 MapR-FS

	

 Goofys

	

 S3FS

	

 S3QL

	

 ObjectiveFS

	

 WekaIO Matrix

	

 Quobyte

	

 DigitalOcean

	

 Community

	

 kdb+ and q forum

	

 White papers

	

 About this site

	

 kdb Insights

	

 kdb Insights Enterprise

	

 KDB.AI

	

 PyKX

	

 APIs

	

 Learn

 Learn

 	

 Get started

	

 Install

	

 Licenses

	

 Mountain tour

 Mountain tour

 	

 Overview

	

 Begin here

	

 The q session

	

 Tables

	

 CSVs

	

 Datatypes

	

 Scripts

	

 IDE

	

 Q for quants

	

 Q by Examples

	

 Q for All

	

 Examples from Python

 Examples from Python

 	

 Basic

	

 Array

	

 List

	

 Strings

	

 Dictionaries

	

 Q for Mortals 3

	

 Q by Puzzles

 Q by Puzzles

 	

 About

	

 12 Days of Xmas

	

 ABC problem

	

 Abundant odds

	

 Four is magic

	

 Name Game

	

 Summarize and Say

	

 Word wheel

	

 Reading room

 Reading room

 	

 Information desk

	

 Boggle

	

 Cats cradle

	

 Fizz buzz

	

 Klondike

	

 Phrasebook

	

 Scrabble

	

 Application examples

 Application examples

 	

 Astronomy (WP)

	

 Bitcoin blockchains (WP)

	

 Card counters (WP)

	

 Corporate actions (WP)

	

 Disaster management (WP)

	

 Exoplanets (WP)

	

 Market depth (WP)

	

 Market fragmentation (WP)

	

 Option pricing (WP)

	

 Predicting floods (WP)

	

 Signal processing (WP)

	

 Space weather (WP)

	

 Trading surveillance (WP)

	

 Transaction-cost analysis (WP)

	

 Trend indicators (WP)

	

 Advanced q

 Advanced q

 	

 Remarks on Style

	

 Shifts & scans

	

 Technical articles

	

 Views

	

 Origins

	

 Terminology

	

 Starting kdb+

 Starting kdb+

 	

 Overview

	

 The q language

	

 IPC

	

 Tables

	

 Historical database

	

 Realtime database

	

 Language

 Language

 	

 Reference card

	

 By topic

	

 Iteration

 Iteration

 	

 Overview

	

 Implicit iteration

	

 Iterators

	

 Maps

	

 Accumulators

	

 Guide to iterators (WP)

	

 Keywords

 Keywords

 	

 abs

	

 aj, aj0, ajf, ajf0

	

 all, any

	

 and

	

 asc, iasc, xasc

	

 asof

	

 attr

	

 avg, avgs, mavg, wavg

	

 bin, binr

	

 ceiling

	

 count, mcount

	

 cols, xcol, xcols

	

 cor

	

 cos, acos

	

 cov, scov

	

 cross

	

 csv

	

 cut

	

 delete

	

 deltas

	

 desc, idesc, xdesc

	

 dev, mdev, sdev

	

 differ

	

 distinct

	

 div

	

 dsave

	

 each, peach

	

 ej

	

 ema

	

 enlist

	

 eval, reval

	

 except

	

 exec

	

 exit

	

 exp, xexp

	

 fby

	

 fills

	

 first, last

	

 fkeys

	

 flip

	

 floor

	

 get, set

	

 getenv, setenv

	

 group

	

 gtime, ltime

	

 hcount

	

 hdel

	

 hopen, hclose

	

 hsym

	

 ij, ijf

	

 in

	

 insert

	

 inter

	

 inv

	

 key

	

 keys, xkey

	

 like

	

 lj, ljf

	

 load, rload

	

 log, xlog

	

 lower

	

 lsq

	

 max, maxs, mmax

	

 md5

	

 med

	

 meta

	

 min, mins, mmin

	

 mmu

	

 mod

	

 neg

	

 next, prev, xprev

	

 not

	

 null

	

 or

	

 over, scan

	

 parse

	

 pj

	

 prd, prds

	

 prior

	

 rand

	

 rank

	

 ratios

	

 raze

	

 read0

	

 read1

	

 reciprocal

	

 reverse

	

 rotate

	

 save, rsave

	

 select

	

 show

	

 signum

	

 sin, asin

	

 sqrt

	

 ss, ssr

	

 string

	

 sublist

	

 sum, sums, msum, wsum

	

 sv

	

 system

	

 tables

	

 tan, atan

	

 til

	

 trim, ltrim, rtrim

	

 type

	

 uj, ujf

	

 union

	

 ungroup

	

 update

	

 upsert

	

 value

	

 var, svar

	

 view, views

	

 vs

	

 where

	

 within

	

 wj, wj1

	

 xbar

	

 xgroup

	

 xrank

	

 Overloaded glyphs

	

 Operators

 Operators

 	

 Add

	

 Amend

	

 Apply, Index, Trap

	

 Assign

	

 Cast

	

 Coalesce

	

 Compose

	

 Cut

	

 Deal, Roll, Permute

	

 Delete

	

 Display

	

 Dict

	

 Divide

	

 Dynamic Load

	

 Drop

	

 Enkey, Unkey

	

 Enumerate

	

 Enumeration

	

 Enum Extend

	

 Equal

	

 Exec

	

 File Binary

	

 File Text

	

 Fill

	

 Find

	

 Flip Splayed

	

 Greater

	

 Greater Than

	

 Identity, Null

	

 Join

	

 Less Than

	

 Lesser

	

 Match

	

 Matrix Multiply

	

 Multiply

	

 Not Equal

	

 Pad

	

 Select

	

 Set Attribute

	

 Simple Exec

	

 Signal

	

 Subtract

	

 Take

	

 Tok

	

 Update

	

 Vector Conditional

	

 Control constructs

 Control constructs

 	

 Cond

	

 do

	

 if

	

 while

	

 Namespaces

 Namespaces

 	

 .h

	

 .j

	

 .m

	

 .Q

	

 .z

	

 Application

	

 Atomic functions

	

 Comparison

	

 Conformability

	

 Connection handles

	

 Datatypes

	

 Dictionaries

	

 Enumerations

	

 Evaluation control

	

 Exposed infrastructure

	

 File system

	

 Function notation

	

 Functional qSQL

	

 Glossary

	

 Internal functions

	

 Joins

	

 Mathematics

	

 Metadata

	

 Namespaces

	

 Parse trees

	

 Parse trees, functional SQL (WP)

	

 QSQL queries

	

 Regular Expressions

	

 Syntax

	

 Tables

	

 Variadic syntax

	

 Database

 Database

 	

 Tables in the filesystem

	

 Populating tables

 Populating tables

 	

 Loading from large files

	

 Foreign keys (WP)

	

 Linking columns

	

 Data loaders (WP)

	

 From MDB via ODBC

	

 Persisting tables

 Persisting tables

 	

 Serializing an object

	

 Splayed tables

	

 Partitioned tables

	

 Segmented databases

	

 Multiple partitions (WP)

	

 Maintenance

 Maintenance

 	

 Data management (WP)

	

 Data-At-Rest Encryption

	

 File compression

	

 Compression (WP)

	

 Permissions (WP)

	

 Query optimization (WP)

	

 Query scaling (WP)

	

 Time-series simplification (WP)

	

 Compacting HDB sym

	

 Working with sym files (WP)

	

 Developing

 Developing

 	

 IPC

 IPC

 	

 Overview

	

 Callbacks

	

 Listening port

	

 Named pipes

	

 Serialization examples

	

 Server calling client

	

 Socket sharding (WP)

	

 SSL/TLS

	

 WebSockets

	

 Interprocess communication (WP)

	

 Tools

 Tools

 	

 Code profiler

	

 Debugging

	

 Errors

	

 man.q

	

 System commands

	

 Unit tests

	

 Using .z

	

 Coding

 Coding

 	

 Data visualization (WP)

	

 Deferred response

	

 Geospatial indexing

	

 Linear programming

	

 Multithreaded input

	

 Multithreaded primitives

	

 Pivoting tables

	

 Precision

	

 Programming examples

	

 Programming idioms

	

 Temporal data

	

 Timezones

	

 Unicode

	

 DevOps

 DevOps

 	

 Authentication and access

	

 Command-line options

	

 CPU affinity

	

 Custom web server

	

 Daemon

	

 Firewalling

	

 inetd, xinetd

	

 Linux production notes

	

 Logging

	

 Multi-threading (WP)

	

 Multiple versions

	

 Parallel processing

	

 Performance tips

	

 Replay logfile

	

 Shebang script

	

 Surveillance latency (WP)

	

 Windows service

	

 Release notes

 Release notes

 	

 History

	

 Changes in 4.1

	

 Changes in 4.0

	

 Changes in 3.6

	

 Changes in 3.5

	

 Changes in 3.4

	

 Changes in 3.3

	

 Changes in 3.2

	

 Changes in 3.1

	

 Changes in 3.0

	

 Changes in 2.8

	

 Changes in 2.7

	

 Changes in 2.6

	

 Changes in 2.5

	

 Changes in 2.4

	

 Withdrawn

	

 FAQ

	

 Architecture

 Architecture

 	

 About

	

 Examples

	

 Alternative in-memory layouts

	

 Chained tickerplant

	

 Client-server

	

 Corporate actions

	

 Data recovery for kdb+tick (WP)

	

 Disaster recovery (WP)

	

 Gateway design (WP)

	

 Kdb+tick configuration

	

 Kdb+tick profiling (WP)

	

 Kubernetes

	

 Load balancing

	

 Memory backed by files

	

 Optane Memory

 Optane Memory

 	

 Optane Memory and kdb+

	

 Performance tests

	

 Order Book (WP)

	

 Publish and subscribe

	

 Pub/sub with Solace (WP)

	

 Query Routing (WP)

	

 Real-time tick subscribers (WP)

	

 WebSockets (WP)

	

 Write-only RDB

	

 Advanced

 Advanced

 	

 Distributed systems (WP)

	

 Intraday writedown (WP)

 Intraday writedown (WP)

 On this page

 	

 Standard tick setup

	

 w.q

	

 Limitations of w.q

 	

 Downtime

	

 Performance

	

 Intraday write with partitioned temporary directory

	

 Querying partitioned writedown

	

 Comparison of w.q and partitioned writedown

 	

 End-of-day speed

	

 Query speed

	

 Conclusion

	

 Author

	

 Help

 On this page

 	

 Standard tick setup

	

 w.q

	

 Limitations of w.q

 	

 Downtime

	

 Performance

	

 Intraday write with partitioned temporary directory

	

 Querying partitioned writedown

	

 Comparison of w.q and partitioned writedown

 	

 End-of-day speed

	

 Query speed

	

 Conclusion

	

 Author

White paper

Intraday writedown solutions¶

by Colm McCarthy

With data volumes in the financial-services sector continuing to grow at exponential rates, kdb+ is the data-storage technology of choice for many financial institutions due to its efficiency in storing and retrieving large volumes of data. Kdb+ is uniquely equipped to deal with these growing data volumes as it is extremely scalable and can deal with increasing data volumes with ease. As volumes grow the amount of data that can be kept in memory will eventually be limited by the RAM available on the server. There exist two types of solution to this problem.

The easiest and most obvious is the hardware solution which would involve increasing the RAM available or to scale across multiple machines, splitting the data up across servers by region, table or symbol. However, some existing users who are experiencing large data growth may be prevented from using this solution because of operational restrictions or hardware limitations.

The second solution – the software solution – continues to use a server which has inadequate RAM to store a whole day’s data. In this solution, the reliance on RAM is reduced by periodically writing the data to disk and then purging it from memory. This intraday write to disk allows a full day’s worth of data to be contained on a single server. This is not the ideal setup for kdb+ and as such will come with some penalties attached.

This paper discusses various software approaches to performing intraday writedowns in kdb+, which help overcome memory limitations.

Tests performed using kdb+ version 3.1 2014.02.08

Standard tick setup¶

Most kdb+ users will be familiar with a vanilla tick setup which has a tickerplant (TP) receiving data and then logging it to disk and publishing to an in-memory realtime database (RDB) which keeps all of the current day’s data in memory. At the end of the day the RDB then commits this data to disk in a separate historical database (HDB) which stores all of this historical data. This means that the most recent data (and often most important) always has the fastest access time as it is stored in RAM.

[image: Figure 1]

The standard approach above can be limited by available RAM if daily data volumes grow too large. It is important to realize also that extra RAM is required to query the data, on top of what is required to keep it in memory. The extra amount required will vary depending on the different use cases and queries that are run on it. Consideration must also be given to other processes such as chained RDBs or HDBs which will need to share the resources on the server.

One solution is to write down some of the data from the RDB to a temporary directory on disk at different points throughout the day and then delete the data from memory, thus freeing up RAM. Various methods to achieve this will be discussed. Initially, the TP is publishing data asynchronously to the RDB and calling a upd function equivalent to the insert function.

w.q¶

simongarland/tick

This script can easily be modified to work with any standard kdb+ setup. The important changes begin with the callback function upd which no longer simply inserts data into the table.

append:{[t;data]
 t insert data;
 if[MAXROWS<count value t;
 // append enumerated buffer to disk
 .[` sv TMPSAVE,t,`;();,;.Q.en[`:.]`. t];
 // clear buffer
 @[`.;t;0#]] }
upd:append

The new upd function inserts the data into the table, and then if the count has exceeded a pre-configured value – MAXROWS – all data in the table is enumerated and is appended to a splayed table on disk in the TMPSAVE temporary directory. The data is then deleted from the RDB, thus reducing the memory used by the process.

At the end of the day all data has been written to disk in splayed tables, in time order. Most HDBs however are partitioned by date and a parted attribute is applied to the sym column, while also retaining time order within each sym. Therefore the on-disk temporary tables need to be reorganized before they can be added to the HDB as a new date partition.

The end-of-day logic is invoked by calling .u.end. This generally consists of writing the RDB data to a new partition and then deleting all data from the RDB tables. In w.q, .u.end is overridden to save any remaining data in the tables to the temporary directory before purging them. The data is then sorted on disk, moved from the temporary directory to a new date partition in the main HDB directory and made available to clients by reloading the HDB.

/ end of day: save, clear, sort on disk, move, hdb reload
.u.end:{
 t:tables`.;
 t@:where 11h=type each t@\:`sym;
 / append enumerated buffer to disk
 {.[` sv TMPSAVE,x,`;();,;.Q.en[`:.]`. x]}each t; / clear buffer
 @[`.;t;0#];
 / sort on disk by sym and set `p#
 / {@[`sym xasc` sv TMPSAVE,x,`;`sym;`p#]}each t;
 {disksort[` sv TMPSAVE,x,`;`sym;`p#]}each t;
 / move the complete partition to final home,
 / use mv instead of built-in r if filesystem whines
 system"r ",(1_string TMPSAVE)," ",-1_1_string .Q.par[`:.;x;`];
 / reset TMPSAVE for new day
 TMPSAVE::getTMPSAVE .z.d;
 / and notify hdb to reload and pick up new partition
 if[h:@[hopen;`$":",.u.x 1;0];h"\\l .";hclose h]; }

Instead of using xasc to sort the table, the script implements an optimized function for sorting tables on disk. This function disksort takes three arguments:

	the handle to the on-disk table
	the column name to part the table by, generally sym
	a function to apply an attribute, e.g. `p# for parted

disksort:{[t;c;a]
 if[not`s~attr(t:hsym t)c;
 if[count t;
 ii:iasc iasc flip c!t c,:();
 if[not$[(0,-1+count ii)~(first;last)@\:ii;@[{`s#x;1b};ii;0b];0b];
 {v:get y;
 if[not$[all(fv:first v)~/:256#v;all fv~/:v;0b];
 v[x]:v;
 y set v];}[ii] each ` sv't,'get ` sv t,`.d
]
];
 @[t;first c;a]];
 t}

The table is not reorganized if the column we are parting the table by is already sorted – it may actually already have a s attribute applied. If the table needs to be sorted, each column is sorted in turn except if all values in a particular column are identical. Rather than check the whole column, initially just the first 256 entries are checked for uniqueness. Finally the p attribute is set on the sym column. To ensure best performance, xasc times should be compared with disksort on each table.

The w.q script has an additional option to delete the temporary data on exit to handle recovery scenarios. The default behavior is to delete the temporary data and recover from the TP log as it is difficult to locate the point in the TP log which was last committed to disk.

Limitations of w.q¶

Downtime¶

When rolling the RDB at end of day it is very important to minimize the downtime of the RDB and to have the new date partition available as quickly as possible in the HDB. However, sorting very large tables on disk can add significant delay, no matter which sorting method is used. Table 1 describes the time taken (in seconds) to sort a quote table for increasing numbers of rows. The schema of the quote table is described below:

quote:([]
 time:`time$();
 sym:`symbol$();
 bid:`float$();
 ask:`float$();
 bsize:`int$();
 asize:`int$())

Table 1:
 rows disksort xasc

 100,000 0.017 0.011
 1,000,000 0.207 0.125
 10,000,000 2.240 1.447
 50,000,000 10.778 7.046
100,000,000 20.102 13.285
500,000,000 121.485 112.452

As can be seen, the amount of time taken to sort a simple table like the above is quite large. This may be a serious problem as yesterday’s data may not be queryable for a significant period each morning.

Performance¶

The w.q solution was intended more as an effective method to alleviate RAM problems during data capture than to be a queryable process. Since the most recent data will be in-memory and everything else is splayed on disk, any queries for intraday data will have to be run against both tables and be combined. The query against the on-disk splay with no attributes will have a significant impact on query performance.

This problem may be somewhat mitigated as the most recent data is of most interest. For example, we could keep the last 5 minutes of data in memory. This could be achieved by amending the append function described above.

append:{[t;data]
 t insert data;
 // find if any rows older than 5 mins
 if[(first t`time) <minT:.z.t-00:05;
 // append enumerated buffer to disk
 cnt:count tab:select from t where time<minT;
 .[` sv TMPSAVE,t,`;();,;.Q.en[`:.] tab];
 // clear buffer
 @[`.;t;cnt _]] }
upd:append

However, for a table with many updates, a small number of rows will be written to disk very often making this approach inefficient. A better solution would be to write the data to disk on a timer. The timer could be set to trigger every 5 minutes, meaning that at all times the most recent 5 minutes worth of data in each table is available (up to 10 minutes). This would have a much smaller cost per writedown and operate more like a standard RDB.

upd:insert
writedown:{[t]
 // find if any rows older than 5 mins
 if[(first t`time) <minT:.z.t-00:05;
 // append enumerated buffer to disk
 cnt:count tab:select from t where time<minT;
 .[` sv TMPSAVE,t,`;();,;.Q.en[`:.] tab];
 // clear buffer
 @[`.;t;cnt _]] }

.z.ts:{writedown each tables[]} // timer function
system"t 300000" // set timer to 5 mins

Alternatively, instead of keeping between 0 and MAXROWS in memory, we could keep between MINROWS and MAXROWS, thus guaranteeing a certain number of rows at all times in the RDB. Another consideration may be that some tables (perhaps smaller reference tables) may not need to be written down as much or indeed at all. Therefore a method to differentiate between the tables is required.

WRITETBLS:`trade`quote // tables to write down intra day
MAXROWS:30000 // default max value
MINROWS:20000 // default min value
MAXTBL:(enlist `quote)!enlist 100000 // dict of max values per table
MINTBL:(enlist `quote)!enlist 50000 // dict of min values per table
append:{[t;data]
 t insert data;
 if[t in WRITETBLS; // if table over its allowable size
 if[(mx:MAXROWS^MAXTBL[t])<count value t;
 // append enumerated buffer to disk (specific to table)
 .[` sv TMPSAVE,t,`;();,;.Q.en[`:.](cnt:mx-MINROWS^MINTBL[t]) sublist `. t];
 // clear buffer
 @[`.;t;cnt _]]] }
upd:append

Using the above, the quote table would write down in chunks of 50,000 whenever it hit 100,000 rows, thus always having at least 50,000 in memory. The trade table, however, has no specific values set and so it would default back to writing in chunks of 10,000 rows, thus always having 20,000 in memory. Any other table would be unaffected and hold all data in memory until end of day.

The end-of-day (EOD) function would have to change as some of the tables are not subject to the intraday writedown. These tables can be written straight to the HDB as previously.

.u.end:{
 t:tables`.;t@:where `g=attr each t@\:`sym;
 / append enumerated buffer to disk for write tables
 {.[` sv TMPSAVE,x,`;();,;.Q.en[`:.]`. x]}each WRITETBLS;
 / clear buffer for write tables
 @[`.;WRITETBLS;0#];
 / write normal tables down in usual manner
 {[x;t].Q.dpft[`:.;x;`sym;]each t;@[`.;t;0#]}[x;]each t except WRITETBLS;
 / special logic to sort and move tmp tables to hdb
 .u.endWTbls[x;WRITETBLS];
 / reapply grouped attribute
 @[;`sym;`g#] each t;
 / and notify hdb to reload and pick up new partition
 if[h:@[hopen;`$":",.u.x 1;0];h"\\l .";hclose h] }

/ end of day: save, clear, sort on disk, move
.u.endWTbls:{[x;t]
 t@:where 11h=type each t@\:`sym;
 / sort on disk by sym, set `p# and move
 {disksort[` sv TMPSAVE,x,`;`sym;`p#]}each t;
 system"r ",(1_string TMPSAVE)," ",-1_1_string .Q.par[`:.;x;`];
 / reset TMPSAVE for new day
 TMPSAVE::getTMPSAVE .z.d; }

Another customization, although beyond the scope of this paper, would be to have a separate process carry out the disksort-and-move for any tables that were written down intraday. This would mean the RDB could very quickly do its end-of-day processing (mostly writing any remaining rows to the temporary directory) and continue to receive data as usual from the TP.

However, while this significantly reduces downtime for the RDB, the HDB will still not be able to pick up the new partition until the disksort is complete which may take quite some time as detailed earlier.

Intraday write with partitioned temporary directory¶

A partitioned table in kdb+ may be partitioned by one of four separate datatypes, namely date, month, year and int. Date is the most commonly used, however, our solution for intraday writedowns involves partitioning by int. Partitioning by int offers some extra possibilities that can be used to help mitigate some of the problems associated with intraday writedowns. We will also make use of the fact that symbols in an HDB are enumerated against a simple int list.

Each partition in our intraday writedown directory will store data for a single sym and the partition value will be the enumerated integer value for that sym. If, for example, in your HDB’s symfile the enumerated value of `eurusd is 223, then during the day EURUSD updates that are being written to disk will be appended to the relevant table in the 223 int partition. These entries will be sorted by time as they are being appended and so will have a s attribute on time in the temporary directory.

The advantage of of this method is that the data in the temporary directory can be queried much more efficiently as it is essentially partitioned by sym and sorted by time. The second processing time-saving is seen at EOD: no sort is required since the data is already divided by sym. Therefore, adding to the HDB reduces from an append-and-sort to a simple append.

This solution, of course, comes with its own drawbacks, namely added complexity in maintaining the data in the RDB and in creating the HDB partition. Also, querying the data will be much more complicated as result of the data being stored in a different format in memory and in the temporary directory. However, depending on the use case, the benefits may outweigh the drawbacks.

The solution begins by setting the following in the RDB.

// config
TMPSAVE:`$":/home/local/FD/cmccarthy/wp/tmpPW"
HDBDIR:`$":/home/local/FD/cmccarthy/wp/hdb/schema"
WRITETBLS:`trade`quote
MAXROWS:2000; MINROWS:1000
MAXTBL:MINTBL:(0#`)!0#0N
MAXTBL[`quote]:100000; MINTBL[`quote]:0
MAXTBLSYM:MINTBLSYM:enlist[`]!enlist(0#`)!0#0N
MAXTBLSYM[`quote;`eurusd]:100000; MINTBLSYM[`quote;`eurusd]:0

// number of rows to write to disk by table by sym
minrows:{[t;s]MINROWS^MINTBL[t]^MINTBLSYM[t;s]}
maxrows:{[t;s]MAXROWS^MAXTBL[t]^MAXTBLSYM[t;s]}
writecount:{[t;s]maxrows[t;s]-minrows[t;s]}

// time of last record saved to TMPSAVE by table and sym
LASTTIME:enlist[`]!enlist(0#`)!0#0Nt

Initially, the location of the HDB and temporary intraday DB are set, and the tables that need to be written down intraday are defined, as well as the minimum and maximum number of rows to keep in memory. This configuration is similar to some of the customizations described in previously for w.q, but slightly more granular in that it allows values to be set for each table and for each sym within that table. This is done using a dictionary of dictionaries, which can be easily indexed.

q)MAXTBLSYM:MINTBLSYM:enlist[`]!enlist(0#`)!0#0N
q)MAXTBLSYM[`quote;`eurgbp]:75000;MAXTBLSYM[`quote;`eurusd]:100000
q)MAXTBLSYM[`trade;`eurgbp]:40000;MAXTBLSYM[`trade;`eurusd]:50000

q)MAXTBLSYM
 | (`symbol$())!`long$()
quote| `eurgbp`eurusd!75000 100000
trade| `eurgbp`eurusd!40000 50000

q)MAXTBLSYM[`trade;`eurgbp]
40000
q)MAXTBLSYM[`quote;`eurgbp`eurusd]
75000 100000

The minrows, maxrows and writecount functions simply take a table and sym and return the relevant counts. LASTTIME stores the time of the last record for each sym per table that was written to the temporary directory. This may be used later to help speed up some queries.

// store table schemas and column names for all tables
system "l /home/local/FD/cmccarthy/wp/tick/schema.q"
TBLSCHEMAS.:(); TBLCOLS.:()
{TBLSCHEMAS[x]:0#value x}each tables[]; {TBLCOLS[x]:cols value x}each tables[]

// create structure for tables in the in memory portion of WRITETBLS
createTblStruct:{(` sv`.mem,x,`)set TBLSCHEMAS x}
createTblStruct each WRITETBLS

// retrieve sym file from HDB directory
HDBSYM:` sv HDBDIR,`sym
sym:@[get;HDBSYM;`symbol$()]

// remove all but an empty 0 directory and symlink to HDB sym file
clearTmpDir:{[]
 system"rm -rf ",(1_string TMPSAVE),"/0/*";
 {system"rm -rf ",x;}each 1_'string` sv'TMPSAVE,'key[TMPSAVE]except`sym`0; }

// run on startup in case TMPSAVE directory is not empty i.e. recovery
clearTmpDir[]

The table schema is loaded and the schema of each table is stored in TBLSCHEMAS as they will be needed at EOD. This is also stored in a dictionary of dictionaries. The same method is used to store the column names of each table in TBLCOLS.

As we are planning on storing the data in the temporary directory divided by sym, it also makes sense to store it in memory divided by sym. This is achieved by creating a tree-like structure which allows us to easily retrieve data for a particular sym in a particular table. The tables are stored in a top level namespace, .mem. Using the quote table from earlier as an example:

q)eurusd:eurgbp:0#quote
q)insert[`eurusd;(2#12:10:01.000;2#`eurusd;2#1.0;2#1.1;2#10;2#20)]
q)insert[`eurgbp;(2#12:10:01.000;2#`eurgbp;2#1.0;2#1.1;2#10;2#20)]
q).mem[`quote;`eurusd]:eurusd
q).mem[`quote;`eurgbp]:eurgbp

q).mem.quote
 | +`time`sym`bid`ask`bsize`asize!(`time$();`symbol$();`float...
eurusd| +`time`sym`bid`ask`bsize`asize!(12:10:01.000 12:10:01.000;...
eurgbp| +`time`sym`bid`ask`bsize`asize!(12:10:01.000 12:10:01.000;...

q).mem[`quote;`eurgbp]
time sym bid ask bsize asize

12:10:01.000 eurgbp 1 1.1 10 20
12:10:01.000 eurgbp 1 1.1 10 20

When creating the temporary directory initially, it is advisable to create an empty 0 partition inside it. This is to avoid the case whereby the first sym written down is mistaken by kdb+ to be a year e.g. 2021. By having an empty 0 folder kdb+ recognises the whole directory to be partitioned by integer.

It is also helpful to create a symlink to the actual HDB symfile rather than attempting to copy it between the two directories. The clearTmpDir function will empty the temporary directory of everything except the symlink and an empty 0 partition. This is run on startup in case there is still data in the temporary directory e.g. in case of running recovery. It is also run at EOD to clear the temporary directory in preparation for the next day.

This temporary directory will be loaded into kdb+ like a regular HDB. Thus these memory-mapped tables will override the empty tables loaded from the table schema on start up of the RDB. These on-disk tables can then be queried (akin to a HDB). As with w.q, the upd function needs to be overridden to work with this new solution.

// adjusted upd
upd:{[t;x]
 $[t in WRITETBLS;
 // insert data into new table structure
 [.[` sv `.mem,t;();,';x group x`sym];
 // append to disk any sym segments over the allowable count
 writeToTmp[t;;0b]each s
 where maxrows[t;s]<=count each .mem[t]s:distinct x`sym;];
 // if not a WRITETBL then insert as normal
 .[insert;(t;x);{}]]; }

First, the table is grouped by sym. This function assumes that bulk updates are being received. If it is known that only single rows will be received (i.e. no buffering of data in the TP) then this group is unnecessary and should be removed. Next, for each sym the rows are appended to the relevant table in the .mem dictionary structure.

After this there is a check, using the maxrows function, to determine if any of the tables for these syms have now exceeded their max allowable rowcount. If they have then this table name and sym name are sent to the writeToTmp function. If the table was not in the WRITETBLS list then it is inserted as normal.

// function to append a table/sym to the temporary directory
writeToTmp:{[t;s;e]
 // enumerate against symfile
 i:sym?(HDBSYM?s);
 newTbl:not t in key LASTTIME;
 newPart:not(`$string i)in key TMPSAVE;
 // if EOD append full table (else writecount) to int partition
 cnt:$[e;count .mem[t;s]; writecount[t;s]];
 (dir:` sv .Q.par[TMPSAVE;i;t],`)upsert .Q.en[HDBDIR]
 $[e;.mem[t;s];cnt sublist .mem[t;s]];
 // apply sort attribute to on disk partition
 @[dir;`time;`s#];
 // update LASTTIME with time from last row appended to disk
 LASTTIME[t;s]:.mem[t;s;`time]cnt-1;
 // delete the rows that have been written and apply sort attribute
 .[`.mem;(t;s);cnt _]; .[`.mem;(t;s);@[;`time;`s#]];
 // if new partition/table then populate all partitions and reload
 if[newTbl or newPart;.Q.chk[TMPSAVE];system"l ",1_ string TMPSAVE] }

The writeToTmp function takes three arguments: the table name, symbol name and an end-of-day flag. This end-of-day flag is added because at EOD the tables will need to emptied completely instead of a partial write and purge. This function:

	Enumerates the symbol against the sym file.
	If a new partition or new table is being created, then .Q.chk is run to populate all partitions correctly and the temporary directory is reloaded.
	The number of rows to write is calculated using writecount (or count table if EOD).
	These rows are upserted to the correct table in the temporary directory with a sorted attribute.
	LASTTIME stores the time of the last row appended to disk.
	The rows written down are deleted from the RDB and the sorted attribute is reapplied.

Our logic for EOD processing now becomes:

// modified EOD funct
.u.end:{[d]
 // set new path for HDB and date
 hdbDateDir:` sv HDBDIR,`$string d;

 // writedown for normal tables
 {[x;t].Q.dpft[HDBDIR;x;`sym;]each t;@[`.;t;:;TBLSCHEMAS t]}[d;]each
 tables[] except WRITETBLS;

 // flush yet to be written data to TPMSAVE (with end of day flag)
 {[t]writeToTmp[t;;1b]each where 0<count each .mem[t];
 // reset the table to initial schema and reset .mem structure
 @[`.;t;:;TBLSCHEMAS t];![`.mem;();0b;enlist t];createTblStruct t}each WRITETBLS;

 // append partitioned tables from TMPSAVE into one table in HDB
 appendHDB[WRITETBLS;hdbDateDir];

 // notify HDB to reload
 if[h:@[hopen;`$":",.u.x 1;0];h"\\l .";hclose h];

 // clear temp directory
 clearTmpDir[];

 // reset global LASTTIME
 LASTTIME::enlist[`]!enlist(0#`)!0#0Nt; }

The first step of this .u.end is to write down any tables that are not part of the intraday writedown as normal. Next, any data still left in the .mem structure needs to be flushed to the temporary directory with the end-of-day flag.

At this point, the tables can be emptied, and reset to their initial schema, as can the .mem structure. The appendHDB function is detailed below and moves/appends the temporary directory into a regular HDB partition.

Similarily to w.q, this step could easily be performed by a separate process, thus freeing up the RDB to continue to receive data for the next day. Finally, the HDB process is notified to reload, the temporary directory is cleared and the LASTTIME variable is reset.

The EOD move/append logic is divided into four functions/steps:

appendCol

	

// # columns can be omitted (used for list columns including strings)
appendCol:{[dtDir;tbl;col;colPath]
 if[not col like"*#";upsert[` sv dtDir,tbl,col;get colPath]] }

	
This function appends the data from one column in the temporary directory onto the similarly-named column in that table in the HDB date partition. Any # columns should not be moved as these will be generated automatically in the HDB partition. (# columns are used to store the lengths of each row for a list column.)

appendPart

	

// append one temp partition table to HDB
appendPart:{[dtDir;tbl;tblPart]
 colz:key[tblPart]except`.d;colzPaths:` sv'tblPart,'colz;
 // write each column to disk
 appendCol[dtDir;tbl]'[colz;colzPaths]; }

	
The appendPart function works on a single table in a partition in the temporary directory and determines all the columns present in that table, and their fully qualified paths. appendCol is then invoked for each of these columns.

appendTable

	

// append each temp partition table into one table in hdb
appendTable:{[dtDir;tbl;parts]
 tblParts:{[tbl;part]` sv TMPSAVE,part,tbl}[tbl]each parts;
 appendPart[dtDir;tbl;]each tblParts;
 // create .d file with sym before time as normal for hdb
 @[hdb:` sv dtDir,tbl,`; `.d; :;
 `sym`time,get[` sv (first tblParts),`.d]except`time`sym]; }

	
For one table, this works out the fully-qualified path of that table in each partition in the temporary directory and sends each of them to the appendPart function, which appends all theses table into one in the HDB date partition. Finally, a new .d file is created in the HDB partition as generally the order of the sym and time columns are switched compared to the RDB.

appendHDB

	

// append all data in TMPSAVE to HDB
appendHDB:{[tbls;dtDir]
 parts:key[TMPSAVE]except`sym;
 appendTable[dtDir;;parts] each key` sv TMPSAVE,first parts;
 .Q.chk[HDBDIR]; // ensure all tables present in hdb
 // apply p# to each table directory
 {[dir;t]@[` sv dir,t,`;`sym;`p#]}[dtDir] each tbls; }

	
This function works out what partitions are present (i.e. 0 20 56 222 etc.) and also what tables. After appending all the tables using appendTable, .Q.chk is performed on the new HDB partition to ensure no table has been missed out (e.g. if a WRITETBLS table received no updates that day). Finally each table in the HDB date partition has a p (parted) attribute applied.

Querying partitioned writedown¶

Before the query speeds for the different solutions can be compared, the method for querying the partitioned writedown must be discussed. The data for each table is no longer stored in one in-memory table but divided into a different table for each sym, both on-disk and in-memory. This is far from ideal but is one of the penalties that comes with this solution for dealing with low memory.

To query the partitioned portion the correct int value of the sym must be used. This is an example of how querying the intraday partition would work:

q)select from quote where int=sym?`eurusd
int time sym bid ask bsize asize

3 00:00:01.000 eurusd 0.6735184 0.1566519 0 9
3 00:00:02.000 eurusd 0.4668601 0.3365118 0 1
...

q)select bid,bidsize from quote where int in sym?`gbpusd`eurusd
sym bid bsize

gbpusd 0.2159371 5
gbpusd 0.6669928 3
...

To query the equivalent in-memory portions of the tables. the following should be run:

q)select from .mem[`quote;`eurusd]
time sym bid ask bsize asize
--
16:32:40.946 eurusd 0.6387174 0.2846485 9 7
16:32:40.947 eurusd 0.704888 0.2335227 4 9
...

q){[t;s]raze{[t;s]select sym,bid,bsize from .mem[t;s]}[t;]each s}[`quote;`gbpusd`eurusd]
sym bid bsize

gbpusd 0.6735184 0
gbpusd 0.4668601 0
...

Obviously, we will want to run just one query/function which will do all the selects and joining of different tables and return the desired result.

Ideally, the query should always limit the results by sym and use as few columns as possible. The general solution is to select the raw columns from both in memory and on disk for each sym and combine them into one table. While Where clauses can be added to the individual selects relatively easily, group-bys or aggregations should be carried out afterwards on the combined dataset. If the aggregations were to be done while performing the selects some sort of map-reduce functionality would be necessary.

The aim should always be to get the smallest raw dataset possible and then apply aggregations and group-bys. This may mean some large queries would end up pulling in too much data (considering lack of memory was the initial problem) or unnecessarily large amounts of data are returned for relatively simple queries such as first/last. User behavior will have to adjust to take account of some of these limitations.

One approach would be to implement a general query function which will
combine results from the on-disk and in-memory datasets. If a particular user’s query is not catered for by this function, a bespoke function would need to be written for that user.

The following is an example of a query function which combines in-memory data with data from the intraday partition:

// general function for querying WRITETBLS
genQuery:{[t;s;c;whr;st;et]
 // t table name
 // s list of syms to return, ` will return all syms
 // c columns to return, ` will return all columns
 // whr a functional Where clause
 // st start of time interval
 // et end of time interval

 // treat ` as requesting all syms
 s:(),$[s~`;key[.mem t]except`;s];

 // treat ` as requesting all cols
 c:(),$[c~`;TBLCOLS t;c];

 // use time window to narrow down search using within
 win:enlist(within;`time;(st;et));

 // if start time greater than last time on disk for sym, no disk select required
 memFlag:st>LASTTIME[t;s];

 // functional select for each sym from rdb/temp and join
 // (unenumerating the historic data), also takes Where clause
 tabs:{[t;c;win;whr;s;memFlag]
 $[memFlag; ();
 unEnum delete int from ?[t;(enlist(=;`int;sym?s)),win,whr;0b;c!c]] ,
 ?[.mem[t;s];win,whr;0b;c!c]}[t;c;win;whr;;]'[s;memFlag];
 raze tabs }

The time interval specifies the times that the data requested should be within. This can be very helpful when used in conjunction with LASTTIME, which can tell you whether the desired data for a given sym is completely in-memory, or in-memory and on disk. If it is all in memory then the more expensive disk read can be omitted.

The actual selects are carried out using the functional format, one sym at a time and the results joined together using raze. It is important to un-enumerate any sym columns from the on disk selection so that when the tables are razed together the tables sym columns will be consistent and type 11 instead of a mix of 11 and 20. This is achieved using the unEnum function:

// unenumerate the sym columns from the HDB
unEnum:{[tab]
 {[t;c]$[20=type t[c];@[t;c;:;sym@t[c]];t]}/[tab;cols tab] }

In the following example, the Where clause is applied to each of the individual selects before the whole result set is combined:

q)genQuery[`quote;`eurusd`gbpusd;`;((<;`bsize;5);(<;`bid;0.5));10:00;23: 59]
time sym bid ask bsize asize
--
10:40:21.210 eurusd 0.2440827 0.8446513 2 7
10:40:21.240 eurusd 0.2088232 0.1153054 1 1
10:40:21.520 eurusd 0.2007019 0.1717345 2 2
...

The genQuery function could easily be expanded and refined based on what type of queries are run most often and how they are best optimized. However this function demonstrates the principles of how to query both the in-memory and the partitioned data structure together.

Comparison of w.q and partitioned writedown¶

Although not exactly like-for-like, an attempt will be made to compare w.q with the partitioned writedown discussed above. This will be done in two areas: end-of-day processing speed and query speed intraday. While w.q was not designed to be queried intraday, it will serve as a useful benchmark for querying the partitioned writedown solution.

End-of-day speed¶

This test measures how long it takes for the temporary intraday directory to be converted into a standard HDB date partition. At EOD, w.q must first sort the tables on disk and then move them to the HDB, whereas a simple append is all that is required for the partitioned writedown. This offers significant performance benefits for EOD processing, as seen in Table 2 and Figure 2.

This test was performed using the earlier quote table with varying numbers of rows.

Table 2:
 rows disksort xasc partWrite

 100,000 0.017 0.011 0.014
 1,000,000 0.207 0.125 0.091
 10,000,000 2.240 1.447 0.826
 50,000,000 10.778 7.046 4.363
100,000,000 20.102 13.285 8.844
500,000,000 121.485 112.452 71.658

[image: Figure 2: Time to convert to HDB]
Figure 2: Time to convert to HDB

As can be seen, using the partitioned write offers between 40-60%
speedup on the end of day processing compared to w.q.

Query speed¶

To compare the query speeds between w.q and the partitioned writedown we must compare how long it takes to select data from the respective temporary directories, keeping in mind that w.q stores the data as a single splayed table for each table.

To demonstrate, four different queries were run on a quote table as
defined in Limitations of w.q above, with 100 million rows and 10 distinct syms and the time measured in milli-seconds:

	query	solution	syntax	time
	All cols, one sym	w.q	select from quote where sym=`eurusd	2491
	All cols, 3 syms	w.q	select from quote where sym in `eurusd`eurgbp`gbpusd	7128
	3 cols, 1 sym	w.q	select time,bid,bsize from quote where sym=`eurusd	1750
	3 cols, 3 syms	w.q	select time,bid,bsize from quote where sym in `eurusd`eurgbp`gbpusd	2990
	All cols, one sym	partWrite.q	select from quote where int=sym?`eurusd	312
	All cols, 3 syms	partWrite.q	select from quote where int in sym?`eurusd`eurgbp`gbpusd	982
	3 cols, 1 sym	partWrite.q	select time,bid,bsize from quote where int=sym?`eurusd	209
	3 cols, 3 syms	partWrite.q	select time,bid,bsize from quote where int in sym?`eurusd`eurgbp`gbpusd	382

Table 3

[image: Figure 3: Query speeds for on-disk data]

Figure 3: Query speeds for on-disk data

As can be seen in Table 3 and Figure 3, the speed-up in query times is substantial and thus may be worth the more complex storage and querying method.

Conclusion¶

This paper has outlined two different methods for dealing with insufficient RAM on a server, meaning a full day’s worth of data cannot be held in memory. It looked at w.q, available from GitHub, which writes to a splayed table on disk and examined a number of customizations that could be made to it.

It also detailed an alternative method using a partitioned temporary directory and how to query this data. The paper also compared the query speed and speed of the end-of-day process of the two solutions and discussed the reasons for their relative performance.

It is important to point out that any of these solutions come with their own drawbacks and as such the best solution for your individual project will depend on the specific requirements. No one solution will provide the performance and ease of use equal to just maintaining a full day’s worth of data in memory. The complexity of how that data is stored and queried will inevitably increase. However, by using some or a combination of the ideas presented in this paper, a workable solution that fits your needs may be possible.

Tests performed using kdb+ version 3.1 (2014.02.08)

 PDF

Author¶

Colm McCarthy is a senior kdb+ consultant who has worked for leading investment banks across a number of different asset classes.

 Back to top

 This work is licensed under a Creative Commons Attribution 4.0 International License.
Kx and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of FD Technologies plc.

 Made with

 Material for MkDocs

