
kx
Technical Whitepaper

Disaster-recovery planning for kdb+ tick
systems

Date

Author Stewart Robinson is a kdb+ consultant currently based
in Belfast. He has developed various kdb+ tick
applications, focusing on market surveillance, for some
of the world’s largest financial institutions.

Contents

What does a kdb+ database look like on disk? .. 5
What is failover? ... 7
What does hot-hot mean? .. 8
What to do when… .. 10
Data reconciliation and synchronization ... 15
What is the best configuration for high availability? 16
How does the system recover? .. 17
Additional kdb+ features for disaster recovery ... 18
Control for Kx ... 19
Conclusion .. 20
Appendix ... 21

2

Disaster-recovery planning for kdb+ tick systems kx

Disaster-recovery planning for kdb+ tick systems

Disasters are inevitable; hardware failure, network problems, and data corruption are
all events that could play havoc with a system. If these events are not fully understood
and planned for they may lead to significant downtime and potentially severe business
impact, including revenue loss, legal and financial implications, and impact to business
reputation and brand. Recent high-profile systems failures of a large cloud computing
provider and an international airline highlight the importance for IT systems to have
a comprehensive disaster recovery plan in place.

This whitepaper discusses disaster recovery (DR) and failover concepts from the
perspective of the gateway layer accessing a typical kdb+ tick system used in
capital-markets applications. The end goal of constructing this plan is to ensure high
availability of the application via the gateway where possible, considering all
conceivable failure scenarios and outlining any actions required to prevent data loss,
minimize any downtime and keep the application accessible.

As part of business-continuity and DR planning, the RTO, or Recovery Time Objective,
is the maximum target time set for recovery of the systems after a disaster has struck.
How quickly the system needs to recover can dictate the type of preparations required
and determine the overall budget you should assign to business continuity. If for
example, the RTO is three hours, meaning your business can only survive with systems
down for this amount of time, then you will need to ensure a high level of preparation
and a higher budget to ensure that systems can be recovered quickly. On the other
hand, if the RTO is two weeks, then you can probably budget less and invest in less
advanced solutions.

The RPO, or Recovery Point Objective, is the maximum targeted period in which data
might be lost from the system due to a major incident. Alternatively, the RPO is the
maximum tolerable period in which data might be lost from a critical IT service or
system.

3

Disaster-recovery planning for kdb+ tick systems kx

A disaster recovery plan is usually based on requirements from both the RTO and
RPO specifications which can guide the design of a cost-effective solution. However,
every system has its own unique requirements and challenges; therefore, this paper
does not propose a ‘one-size-fits-all’ approach. Rather, it suggests the best practice
methods for dealing with the various possible failures one needs to be aware of and
plan for when building a kdb+ tick-based system. This paper does not deal with many
failure conditions of a kdb+ system outside of the ticker plant model used in capital
markets.

Kdb+ tick is an architecture which allows the capturing, processing and querying of
data in real time and historically. It typically consists of:

Feedhandler/s
a process used to capture external data and translate it into kdb+

Tickerplant
a specialized kdb+ process that operates as a link between the client’s data feed
and a number of subscribers. It receives data from the feedhandler, appends a
time stamp to it and saves it to a log file. It publishes this data to a real-time
database and any clients which have subscribed to it and then purges its tables
of data. In this way, the tickerplant uses very little memory, whilst a full record
of intra-day data is maintained in the real-time database.

Real-time Database (RDB)
holds all the intra-day data in memory to allow for fast, powerful queries.

Historical Database (HDB)
consists of on-disk kdb+ data, typically split into date partitions. A q process
can read this data and memory-map it, allowing for fast queries across a large
volume of data. The RDB is instructed to save its data to the HDB at EOD (end
of day).

 Whitepaper: Data Recovery for kdb+ tick1

1. http://code.kx.com/q/wp/data_recovery_for_kdb_tick.pdf

4

Disaster-recovery planning for kdb+ tick systems kx

http://code.kx.com/q/wp/data_recovery_for_kdb_tick.pdf

What does a kdb+ database look like on disk?

Before we consider creating a disaster-recovery plan, we first must understand the
layout of a typical kdb+ database on-disk. Kdb+ databases are stored as a series of
files and directories on disk. This makes handling databases extremely easy because
database files can be manipulated as operating system files. Backing up a kdb+ database
can therefore be implemented by using any standard file-system backup utility. This
is a key difference from traditional databases, which have their own backup utilities
and do not allow direct access to the database files.

Kdb+’s use of the native file system is also reflected in the way it uses standard
operating-system features for accessing data (memory-mapped files), whereas
traditional databases use proprietary techniques in an effort to speed up the reading
and writing processes. The typical kdb+ database layout for a tick-based system is
partitioned by date, although integer partitioning is also possible. Below is an example
of an on-disk layout with date partitions as represented using the Linux program tree.

Filesystem tree

The example above displays the various file-system entities which constitute a kdb+
database. Highlighted in bold are directories, which can be either a partition or a
splayed table directory. The splayed table directories contain individual column files

5

Disaster-recovery planning for kdb+ tick systems kx

and a kdb+ .d file which contains the column ordering. A file called sym also exists
at the top level and is used for enumerations of table columns of symbol type.

Splayed or flat tables can also exist in the database at the top level but are excluded
here for simplicity.

The standard approach to saving data to an on-disk database (HDB) is to use the
.Q.dpft utility, usually from an in-memory real-time database via an end-of-day
write-down function (see .u.end in r.q). This utility creates the files and directories
as laid out in the table above, along with applying a parted attribute to the specified
column.

.Q.dpft[`:/kx/hdb;2017.01.01;`sym;`trade]

However, the constituent parts of the utility can be run individually and used to
construct or amend a database. The basic steps are:

1. Enumerate the table to be saved against the sym file (.Q.en)

2. Save enumerated table splayed to date partition. Parent directories are created by
set if they do not yet exist.

Note that as part of setting a splayed table, the column .d file is automatically written
by kdb+. After these steps, the database can now be loaded into q via a simple \l
command.

These step-by-step methods can become useful for fixing issues that may occur on
specific files or date partitions. For example, if we need to reorder our table columns,
or we have a schema change, then the .d file can be overwritten with a simple set.

`:/kx/hdb/2017.01.01/trade/.d set `time`sym`price`size`side`ex

The dbmaint.q script2) provides some useful utilities for editing and maintaining a
historical database (HDB). Generally, these functions are safer and should be used in
place of the raw commands for any database amendments.

In the event that a database needs to be restored to the latest backup version, it is as
simple as restoring the file-system entities from the backup location and reloading
any HDB processes via the load command.

system "l ."

2. https://github.com/KxSystems/kdb/blob/master/utils/dbmaint.md

6

Disaster-recovery planning for kdb+ tick systems kx

https://github.com/KxSystems/kdb/blob/master/utils/dbmaint.md

What is failover?

Failover is the capability to switch over to a redundant or standby server, system or network
upon the failure or termination of an existing asset. Failover should happen without any kind
of human intervention or warning. — Computer Weekly3

In a kdb+ tick setup, failover can be designed and configured at a whole system level
or at a process-by- process level. Generally, if a critical process goes down and does
not restart then the entire system will failover to a mirrored secondary or backup
system. However, if a non-critical process goes down and does not restart then it may
be judged unnecessary to failover the entire system to the secondary server. The
mirrored process on the secondary server may be able to take over from the failed
process.

Alternatively, in the case where there are multiple processes in a group (e.g. HDBs)
on the primary side for load balancing reasons all accessing the same data, then the
remaining processes within the group will simply pick up the slack after the failure
and no switching would be required. However, the issue of failure must be investigated
and fixed to restore full functionality of the system.

In all the various combinations of failover operations that can be designed, the end
goal is always to maintain availability of the application and minimize any disruption
to the business.

3. http://www.computerweekly.com/feature/Idea-lab

7

Disaster-recovery planning for kdb+ tick systems kx

http://www.computerweekly.com/feature/Idea-lab

What does hot-hot mean?

In a production environment, some level of redundancy is always required. Depending
on the use case, requirements may vary but in nearly all instances requiring high
availability, the best option is to have a hot-hot (or ‘active-active’) configuration.

Hot-hot is the term for an identical mirrored secondary system running, separate to
the primary system, capturing and storing data but also serving client queries. In a
system with a secondary server available, hot-hot is the typical configuration as it is
sensible to use all available hardware to maximize operational performance.

Alternative configurations include:

Hot-warm
The secondary system captures data but does not serve queries

Hot-cold
The secondary system has a complete backup or copy of the primary system at
some previous point in time (recall that kdb+ databases are just a series of
operating system files and directories) with no live processes running. A failover
in this scenario involves restoring from this latest backup, with the understanding
that there may be some data loss between the time of failover to the time the
latest backup was made.

Pilot light (or cold hot-warm)
The secondary is on standby and the entire system can quickly be started to
allow recovery in a shorter time period than a hot-cold configuration.

Typically kdb+ is deployed in a high-value system; hence, downtime can impact
business, which justifies the hot-hot setup to ensure high availability.

Usually, the secondary will run on completely separate infrastructure, with a separate
file system, and save the data to a secondary database directory, separate from the
primary. In this way, if the primary system or underlying infrastructure goes offline,
the secondary would be able to take over completely.

The following diagram shows the basic kdb+ tick components, with the primary (A)
processes in green and the secondary (B) processes in red. In addition to the standard
tick processes shown below, there could be a combination of gateways, Complex Event
Processor engines (CEPs) or query router processes. These generally provide various
methods to carefully manage any querying of the database.

8

Disaster-recovery planning for kdb+ tick systems kx

 Whitepaper – Query Routing: a kdb+ framework for a scalable load-balanced
system4

As mentioned above, the usual strategy for failover is to have a complete mirror of
the production system (feedhandler, tickerplant, and real-time subscriber), and when
any critical process goes down, the secondary is able to take over. Switching from
production to disaster recovery systems can be implemented seamlessly using kdb+
interprocess communication5 (via .z.pc).

An alternative method is to have a parent control process monitoring everything
within the system with heart-beating: a simple message sent from the control process
to another asking Are you alive? In the event that a process is unreachable, the parent
control process signals failover of the whole system to the secondary. This is obviously
more complex than using .z.pc between system processes to trigger the failover, but
the advantage is that the whole system can be controlled from a single process pair
(primary and secondary).

While there are other ways to provide additional backup, there is generally no real
alternative to having a parallel collection system for a high-availability kdb+ tick
solution.

In designing the disaster-recovery plan, all possible failure events should be identified,
assessed in terms of overall risk, impact and likelihood of occurrence, and planned
for. The following section considers the options available for the various kdb+ tick
system components within this simplified architecture.

4. http://code.kx.com/q/wp/query_routing_a_kdb_framework_for_a_scalable_load_balanced_system.pdf

5. http://code.kx.com/q/cookbook/ipc/

9

Disaster-recovery planning for kdb+ tick systems kx

http://code.kx.com/q/wp/query_routing_a_kdb_framework_for_a_scalable_load_balanced_system.pdf
http://code.kx.com/q/wp/query_routing_a_kdb_framework_for_a_scalable_load_balanced_system.pdf
http://code.kx.com/q/cookbook/ipc/

What to do when…

…a real-time database goes down
It is important to design the system so it is resilient and fault-tolerant, including
adequately specifying the memory requirements for the RDB and the system as a
whole. Considerations for determining these requirements include the peak message
rate, expected daily data volumes, schema width, query load and complexity and many
others.

If a real-time database does go down, then it is usual practice to trigger a failover to
the secondary RDB, such that the gateway will only route queries to the secondary
RDB while the primary is offline or recovering. Failover can be signaled via .z.pc.
Usually, the handles to the secondary RDB are opened prior to any failover occurring,
and it is simply a case of pointing the query to the secondary RDB handle, in place of
the primary RDB handle. In larger applications, an application delivery controller
(ADC) is often used to control the routing of queries between the application and the
client. It is up to the system architect to decide if the secondary RDB should continue
to serve queries when the primary is available again, or revert to using the primary
RDB again.

A failback process includes data recovery of any data loss during the downtime and
restoring the operations back to a pre-failed over state, i.e. primary and secondary
systems are running and available. Generally, it is recommended that fail-back to the
primary be scheduled during a downtime window. This is to ensure sufficient time
to validate that data is synchronized, functional and that processing is fully restored
at the primary system. There are some applications where you may not have
maintenance or downtime windows available for fail-back. If this is the case the
restoration of the primary must occur in parallel with normal operations on the
secondary system and the data synchronization, reconciliation and fail-back processes
automated.

To recover the primary RDB it should be restarted either manually, or using system
tools, but it will have lost all the intra-day data published by the tickerplant so far for
the day. To recover this intra-day data and regain a subscription to the data feed on
restart, the RDB sends a subscription request to the tickerplant which returns a message
containing the location of the log file and the number of lines to read. The RDB replays
the number of lines specified from the log file, storing the results in memory. In this
way, the RDB has recovered all tickerplant data up to the line number received at the
start of replay. If required to recover other non-tick data, recovery steps should be
built into the initial state function, which would run during the start-up of the RDB
and with this data being loaded from the specified source.

10

Disaster-recovery planning for kdb+ tick systems kx

The restarted RDB receives all subsequent updates from the tickerplant. If updates
arrive whilst the RDB is reading from the log file, they are buffered in the TCP/IP
buffer. If the log file is large enough, then the replay may take enough time that the
buffers fill. In this case, the messages are kept in the main tickerplant process memory
(this can be seen in .z.W in the TP).

Replaying the log can potentially take several minutes or more, depending on the size
of the tickerplant log file, therefore the gateway queries should continue to be routed
to the secondary until recovery and failover are complete, and the primary RDB is
available to capture data and serve queries again.

 Whitepaper Data recovery for kdb+tick6 for a complete understanding of the
recovery from a tickerplant log file, including how to deal with a corrupted log file

…a historical database fails to load
Some well-developed kdb+ systems survived many market events which brought
other systems to their knees, however, it is possible that an HDB may become
unreachable, but through proper database maintenance, access rights, correct
dimensioning and recovery procedures, users can avoid incapacitating an HDB. HDB
process failures and wsfull errors are usually an indication that a process has been
incorrectly dimensioned, or access control has not been applied.

If an HDB fails to load, there could be various underlying causes (corrupted partition,
corrupted sym file, spurious file in the HDB directory, read/write access), but the most
usual case is a corrupted partition. This could potentially be due to an error in the
end-of-day write from the RDB.

If the HDB is serving queries to the gateway similar to those described in the preceding
section, then it would be recommended to route future queries to the secondary HDB.
This could be signaled via error handling in the end-of-day function when the re-load
of the HDB following write down fails.

To restore functionality of the HDB, due to the complexity and variety of potential
issues, it is not recommended to automate any editing onto database partitions.
However, auto detection of many bad states of an HDB is possible and desirable in a
lot of cases and this can guide any necessary manual intervention to fix the issue.

Some common issues along with possible fixes:

A missing table from a partition

This is fixed using either .Q.chk to save empty copies of all tables or .Q.bv to create
in-memory mapping of missing tables. This may arise due to a lack of data having
been received for this date, and the end-of-day write function therefore skips this save.

6. http://code.kx.com/q/wp/data_recovery_for_kdb_tick.pdf

11

Disaster-recovery planning for kdb+ tick systems kx

http://code.kx.com/q/wp/data_recovery_for_kdb_tick.pdf

Unless .Q.bv is in use within HDB processes then the end-of-day write function should
save empty tables as well as those containing data, either directly, or via .Q.chk.

Schema changes

These can cause issues if not implemented correctly. Often this could be missing files
in older partitions for the new fields. This can be resolved by saving a file of null values
of the same type and the same length as the other fields for that date. The .d file should
be updated also. fixtable from dbmaint can be used to save these empty columns,
but a manual example is given below:

/hdb
/set a list of null floats as newcol in trade table for an older partition
`:./2016.12.01/trade/newcol set count[get `:./2016.12.01/trade/sym]#0nf
/update .d file in old date partition
`:./2016.12.01/trade/.d set cols trade

A length error

This is usually due to a column vector being a different length from the rest of the
table. The only method to fix it is to count each column file and compare, then
manually saving the erroneous one to the correct length. This can occur when not
using the standard save commands (.e.g .Q.dpft), but rather setting each column
individually, and some logic has caused the column lengths to vary.

…the tickerplant fails
In an adequately specified 64-bit system, one tickerplant is usually enough to capture
all the data from a feed. A kdb+ process is able to process and store up to 4.5 million
streaming records per second per core and up to 10 million if batching. If the
throughput is expected to exceed these figures then additional tickerplants or cores
may be required.

It is very unusual that a tickerplant process would fail on its own, as it is limited to
certain specialized tasks; though if incorrectly configured it may fail. If a tickerplant
does go down and fails to restart, then there will likely be significant data loss on the
primary system. If the tickerplant is capturing high volumes of market data, even
being down for a few seconds could lead to hundreds of thousands of missed rows of
data.

Failure in a multiple tickerplant environment can be treated in several different ways,
depending on the application and failure type. One possibility is to switch the entire
system to the secondary system. This is the standard approach taken in most
applications. The easiest way of failing over in this way is to shut down the primary
processes, causing all further queries to route to the secondary. Then, during a

12

Disaster-recovery planning for kdb+ tick systems kx

scheduled downtime period, the underlying cause of the failure can be investigated
and addressed.

Alternatively, in some more complex systems, it may be preferable to only failover
individual processes or a selection of relevant processes instead of the entire system.
In this scenario, if the tickerplant dies, this could trigger a failover of the subscriber
to the secondary process. The subscriber isn’t lost and could reconnect to the secondary
TP, allowing seamless transition. Clients that have subscribed to the tickerplant will
receive a closed connection callback to .z.pc. They could then use this to seamlessly
switch over to the secondary. Depending on the time taken to switch and connect to
the secondary tickerplant, there may be some data loss. However, the primary and
secondary systems are usually in separate data centers, therefore this procedure would
force data to be considered in large volumes between sites. Hence, this option needs
to be carefully considered against the specific architecture of the system.

Following failover of the system or subscribers, due to the data loss or risk thereof, it
is necessary to reconcile the data between the primary and secondary databases. Refer
to the following section on data reconciliation for further details.

As mentioned previously, during replay of a large tickerplant log file, pending messages
will sit in the IPC queue waiting until the subscriber (RDB) has completed the replay.
If however, the log file is sufficiently large that the IPC buffer fills with pending
messages, then the overflow can bloat the TP memory. In the financial world, this can
be the case late in the trading day when the log files are nearly at the maximum size,
so restarting an RDB just before market close is the worst scenario. Unless protected
from slow subscribers, the tickerplant memory footprint may, in extreme
circumstances, grow to an unmanageable level, resulting in a wsfull error. Therefore,
aside from suitable dimensioning of the TP host machine for RDB restarts, the
tickerplant log files should reside on high-performance, dedicated drives with no
contention from other processes. This ensures the RDBs will have shortest recovery
time, and therefore reduce the risk of wsfull failures on the tickerplant.

In some implementations intra-day write-down solutions are used to limit the size of
these tickerplant log files to less than a whole day to limit the recovery time of any
replaying of these logs. Other implementations have a ring-fenced instance for
write-downs often termed PDB (persisting database) or WDB (write database).

…the hardware fails
Infrastructure should be designed and implemented with no single points of failure
at the primary and disaster recovery facilities. Even with these precautions, hardware
failures do happen. To help recover from a hardware failure or reduce its impact, we
recommend that a system have multiple copies of data running on different
infrastructure, in addition to point-in-time backups stored on physically separate
storage devices.

13

Disaster-recovery planning for kdb+ tick systems kx

Data can be copied, backed up and synchronized using a combination of file system
utilities, kdb+ processes, and storage hardware and software disk-based replication.
The choice of approach depends on availability, RTO, RPO, performance requirements
and available budget.

Data recovery from a point-in-time backup will require restoring the system using
both the point-in-time backup and tickerplant log files, which will contain any
messages received since the last backup. Therefore it is extremely important to have
sufficient backups of tickerplant log files in addition to backups of the database.

During a hardware failure, such as a disk failure, the performance of a primary system
may be degraded during the recovery process, which may necessitate failing over to
a secondary or disaster recovery system. Provided the secondary systems are running
on different hardware, a hardware failure can be treated similarly to a software failure
and failover can again be controlled via .z.pc signaling. If however, the secondary
system is running on the same server or infrastructure, no recovery can easily be made
until the hardware issue has been resolved. There will possibly be data loss as well in
this scenario.

…there are network connection issues
Network connection problems can sometimes be hard to diagnose. However they are
treated similarly to a software failure as an unreachable process is deemed
indistinguishable from a non-running process. A full failover to the secondary system
should be made if there is a network failure on the primary. This can again be
controlled via .z.pc signaling.

14

Disaster-recovery planning for kdb+ tick systems kx

Data reconciliation and synchronization

In the event of a failover from the primary to the secondary system, there will always
be a risk of data loss on the primary side. Even if callbacks were used to switch
subscription to the secondary, during this switching period there may be some data
missed, for example, the secondary tickerplant may have processed additional messages
prior to the receipt of the subscription request (.u.sub) from the primary RDB. As
such, it is usual for a process of data reconciliation to be configured for the end of the
day.

In the most basic setup, this could simply be a copy of today’s HDB partition (and
syncing the sym file). A more thorough method would be running some checks on
the primary data for the day to check if any data was missed prior to any copies. Control
reports are often used to perform periodic checks to ensure both systems remain in
sync near-real time. These checks can be used as part of the reconciliation period to
ensure that the process worked, or to check which data is required for syncing. A basic
example would be getting the totals or counts from each table. As most data feeds
publish sequence numbers these can also be used for assessing data correctness.

In most systems, there are other types of non-tick data stored in the database, such as
reference data. Depending on the design of the reference data loading process and the
nature of the DR event this data may be required to be synced between both systems
during the reconciliation process. Again this may be a copy from the secondary system
to the primary system, but more often reference data is loaded directly into the primary
system, usually from a CSV file, and then checks are performed to ensure that the
correct reference data was loaded.

15

Disaster-recovery planning for kdb+ tick systems kx

What is the best configuration for high availability?

A hot-hot configuration (primary and secondary) along with a cold offline/offsite
backup (DR) is usually the best configuration to support high-availability and data
security, but dependent on hardware resources and availability requirements, a cold
DR copy/backup may be sufficient.

Of critical importance is backing up the sym file within the HDB root, sufficiently and
regularly. This file is the key to the HDB, (all symbol type fields within the database
are enumerated against this file) and if lost then the data will be very difficult to
recover.

The sym file is an ordered list of symbols, (e.g. `GOOG`APPL`MSFT…) sometimes tens of
thousands of items long. Symbol type columns within the HDB are stored as integers
that map to the position index within the sym vector on loading of the HDB. If the
ordering is lost, or incorrect then the mapping of symbol type columns within the
HDB will be wrong.

If it is necessary to recover the sym file, then the previous sym file backup should be
used, against which any new symbols received into the system may be added, in order.
Fortunately the tickerplant log files contain these new symbols, so it is simply a matter
of replaying the necessary TP logs files in order and enumerating the replayed data
against the restored sym file. However it is important to enumerate the data in the
same order that the data was originally saved, and also be aware of any other non-tick
data which may have been enumerated against the sym file since the last backup.

16

Disaster-recovery planning for kdb+ tick systems kx

How does the system recover?

When a system has failed over to the secondary side, this is the last line of defense
and usually, there are no more levels of active redundancy. If anything further should
happen, the system will likely be offline, and depending on the nature of the failure
event, there could be data loss and potential problems with recovery. As such, it is
important to restore the primary to a functional state as soon as possible.

For a process to have failed, there could have been a variety of reasons. Therefore the
first step in fully recovering the system is understanding why the failure occurred in
the first place. Perhaps the rate of streaming data increased significantly beyond the
expectations when the server was originally specified. Perhaps a poorly-formed query
caused the memory usage in the RDB to spike.

Usually failing back to the primary node should be done outside of operational hours.
This allows for the necessary downtime to investigate the underlying cause and allows
for the possibility of other issues occurring on restart. However as mentioned previously
this may not be possible in systems that have no maintenance or downtime window
available for fail-back.

If this is the case the restoration of the primary must occur in parallel with normal
operations on the secondary system. During this period all queries should be routed
to the secondary, and it is only when recovery is complete and functionality is validated
that the primary should be made available for receiving new data and serving queries.
As the typical configuration is hot-hot, then once the primary is restored fail-back is
complete as both primary and secondary are available for data capture and to serve
queries.

In alternative configurations such as hot-warm, an additional step is required to fully
restore the primary as the hot system. This can be as simple as re-routing queries to
only hit the primary system.

17

Disaster-recovery planning for kdb+ tick systems kx

Additional kdb+ features for disaster recovery

The previous sections describe the suggested approach for designing disaster recovery
and failover from a kdb+ tick point of view, with database backups and ticker-plant
log files used to avoid data loss. However, kdb+ also provides in-built logging,
checkpointing and replication which can provide a level of redundancy in more
complex setups.

A basic example of these features could be using the replication to support CEP
processes in syncing a table between primary and secondary. This process pair can be
configured such that the secondary subscribes to the primary, and all state changes
on the master (primary) are automatically replicated to the secondary. These changes
are logged to disk as well, to allow for recovery in the event that the process fails.

 Cookbook: Logging7 for full details on these options

7. http://code.kx.com/q/cookbook/logging/

18

Disaster-recovery planning for kdb+ tick systems kx

http://code.kx.com/q/cookbook/logging/

Control for Kx

Control for Kx is a code- and process-management system that provides robust failover
management along with standardized logging, error handling, and process monitoring.
These features, coupled with the process templates, provide the framework for quicker
and easier development of custom kdb+ applications. Tried-and-tested failover
solutions provide the flexibility and scalability needed to meet any resilience or
availability requirements.

 kx.com/solutions8

8. https://kx.com/solutions/#EnterpriseFeatures

19

Disaster-recovery planning for kdb+ tick systems kx

https://kx.com/solutions/#EnterpriseFeatures

Conclusion

This whitepaper has stressed the importance of disaster-recovery planning. There is
always a possibility of disastrous events occurring, therefore it is vital to plan effectively
to mitigate any impact on the system if problems occur. The paper has covered the
majority of possible failure scenarios which can occur in a kdb+ tick system and
explained how the operations should be designed to handle these failures. DR should
cover permutations based on a risk assessment (impact and likelihood), therefore as
part of DR planning one of the main questions to consider is ‘does the plan account
for all possible permutations considered in the risk assessment?’ That is, does the
design include steps if all/any of the critical and/or non-critical components are
compromised? If not, then the DR plan is incomplete.

Murphy’s Law states that if it can go wrong, it will go wrong. By this adage, if the DR
design has omitted a potential failure path, then it will happen. Therefore, all possible
event paths must be accounted and planned for in the design, such that any system
impact caused by future events can be minimized.

In our example system, the main goal was to minimize downtime and maintain
availability of the system following major incidents and DR events. Depending on the
use case, minimizing downtime may be prioritized over preventing data loss. In both
cases, if the design has not correctly allowed for regular data backups, there will be
issues when trying to recover during failover. This is why backups of the tickerplant
log files are necessary in addition to backups of the database, as any ‘lost’ tick data
can be replayed from these logs.

It is important to note that even with the best planning, unknown events can still
occur. The issues experienced by an airline in the example given in the opening
paragraph were caused by human error, which was completely unplanned for. With
this in mind, it is important to understand the implications of these failure events,
and through a proper recovery plan based on a risk assessment and RPO and RTO
specifications design a solution which can minimize downtime (i.e. high availability),
recover quickly and accurately from these events, and most importantly prevent and
minimize data loss.

20

Disaster-recovery planning for kdb+ tick systems kx

Appendix

The examples here are edits of r.q from kdb+ tick.

As discussed in the main paper, often the primary and secondary sites are separate,
hence large data transfer between the two could be problematic.

/If TP subscription is killed fail over to backup
TP .z.pc:{neg[hopen[`:localhost:6010]]".u.sub[`;`]";}

Opening a handle to a separate process takes some time. Additionally, as the server
may be busy it is recommended that the all necessary handles are opened on startup.

/Add to r.q
/open handles to primary and backup tp, using details passed in at startup
.tp.handles:(),@[{hopen `$":",x};;()] each .u.x 0 1;
/replace default .u.rep call with one referencing .tp.handles
.u.rep .(first .tp.handles)"(.u.sub[`;`];`.u `i`L)";
/.z.pc now just has to subscribe to the backup TP and the handle is already open
.z.pc:{.tp.handles:.tp.handles except x;(first .tp.handles)".u.sub[`;`]";}

Full details on GitHub at KxSystems/kdb-tick/tick/r.q9

9. https://github.com/KxSystems/kdb-tick/blob/master/tick/r.q

21

Disaster-recovery planning for kdb+ tick systems kx

https://github.com/KxSystems/kdb-tick/blob/master/tick/r.q

	What does a kdb+ database look like on disk?
	What is failover?
	What does hot-hot mean?
	What to do when…
	Data reconciliation and synchronization
	What is the best configuration for high availability?
	How does the system recover?
	Additional kdb+ features for disaster recovery
	Control for Kx
	Conclusion
	Appendix

