
kx
Technical Whitepaper

Data visualization with kdb+ using ODBC

Date July 2018

Author Michaela Woods is a kdb+ consultant for Kx. Based in
London for the past three years, she is now an industry
leader in combining kdb+ with Tableau through her
development of a data visualization platform currently
used at one of the world’s leading investment banks.

Contents

Connecting to kdb+ using ODBC ... 4
Tableau functionality for kdb+ ... 7
Publishing to Tableau Server ... 21
Conclusion .. 23
Appendix A ... 24

2

Data visualization with kdb+ using ODBC kx

Data visualization with kdb+ using ODBC: a Tableau
case study

Business intelligence (BI) tools are widely used across many industries for their
interactive nature, which enables users to create and customize dynamic data
visualizations easily. Kx provides its own visualization tool, Dashboards for Kx1, but
clients might have incumbent solutions they wish to connect to kdb+.

Alternatively, many organizations might wish to migrate their back-end database to
kdb+ for increased efficiency and scalability, while retaining their current visualization
front end. This paper offers guidance.

Tableau2 is an example of a widely-used BI tool. This paper outlines how it can be
used to access kdb+ via ODBC (Open Database Connectivity), a standard
application-programming interface used to connect different database management
systems, specifically designed to be independent of databases and operating systems.
Version 3.4 of kdb+ included an updated version of its Windows ODBC driver
(ODBCv3) to support wider access to kdb+ data.

This paper illustrates the flexibility with which kdb+ data can be accessed by Tableau
using ODBC. It explains further how kdb+’s caching feature may be used to improve
performance by optimizing repeated queries.

Keep in mind that there will always be limitations on third-party solutions not designed
from the outset for processing real-time streaming data. Kx’s own visualization tool
Dashboards for Kx is optimized for streaming queries and inherits functionality such
as user management, load balancing, access control, caching and queuing from the
underlying platform as well as direct access to q for comprehensive querying
capabilities. Such features and their ability to support high-volume, low-latency access
to streaming data cannot be assumed in third-party products.

Guidelines on connection, setup, queries and advice on how to maximize performance
are discussed. For both new and existing users, this paper aims to reduce the learning
curve, boost efficiency and increase usability when combining these two technologies.

All tests were run using kdb+ version 3.5 and Tableau 10.3.

1. http://code.kx.com/q/platform

2. https://tableau.com/

3

Data visualization with kdb+ using ODBC kx

http://code.kx.com/q/platform
https://tableau.com/

Connecting to kdb+ using ODBC

Instructions on how to connect kdb+ from Tableau Desktop for both Windows and
Linux can be found at Interfaces/Kdb+ server for ODBC33.

For an ODBC driver to connect to an application, it needs a DSN (Data Source Name).
A DSN contains the name, directory and driver of the database, and (depending on
the type of DSN) the access credentials of the user.

With administrator rights, adding a new DSN is relatively straightforward. See the
instructions linked to above.

A second way to add a DSN does not require administrator access, and might be useful
for some users. This defines the DSN connection details in a Registry file rather than
adding new DSNs directly in the ODBC Data Source Administrator. This is an
alternative to steps 3, 4 and 5 in the instructions linked to above.

1. Copy qodbc.dll to the correct location.

2. Define the Registry file and save it to C:\Users\<username> with a .reg extension.
Here is an example of what the file might look like.

3. Double-click on the file when saved. This will create the correct driver entries,
which for this example will be a new kdb+ DSN called DEV.

This second method makes it easier to maintain and share connection details with
multiple users, as the DSN details reside in a separate text file rather than in the
Windows Registry.

Connecting to Tableau Desktop
Once a kdb+ DSN has been added, and the rest of the set-up instructions are followed,
you are ready to connect to kdb+ from Tableau. On opening Tableau, you will be
prompted to select the type of database you wish to connect to, select the option Other
Databases (ODBC).

3. http://code.kx.com/q/interfaces/q-server-for-odbc3

4

Data visualization with kdb+ using ODBC kx

http://code.kx.com/q/interfaces/q-server-for-odbc3

Next, select the correct DSN from the dropdown list and click Connect. This will
automatically populate the Connection Attributes in the bottom half of the window
using the details defined earlier in the Registry file. The final step is to click the Sign
In button, which creates a connection to the kdb+ process, enabling the database to
be queried via Tableau’s Custom SQL, as demonstrated in the following section.

Connecting to Tableau Server
The set-up instructions above, both explicit and linked, are specifically for a user
connecting from Tableau Desktop. This is the local version of Tableau installed on a
desktop or laptop. Tableau Server, on the other hand, is installed on a Windows server
and is accessible to users via a browser. Tableau Server brings additional collaboration,
security and scalability capabilities not available using only Tableau Desktop.

Tableau workbooks can be shared between both by publishing from Tableau Desktop
to Tableau Server. This procedure is detailed in the section Publishing to Tableau
Server.

To connect via Tableau Server, the Registry file that was presented in the previous
section needs to be configured. This process may be handled by an organization’s
support team, depending on the installation setup. The driver also needs to be installed,
and then the connection can be initialized much as for Tableau Desktop.

5

Data visualization with kdb+ using ODBC kx

Other considerations
Since a release on 2017.09.114, qodbc3 allows specification of connection details without
a DSN. This means all details, except the password, will be saved by Tableau in a
workbook or saved data source. However, this change only affects desktop users.
Because the password is not embedded, the DSN is still required to be defined on the
server as this is the only way the password will be picked up for published reports.

It is also important to note that connection details are embedded in both the Tableau
workbook and the DSN definition. For version management, when sharing workbooks
between developers or when publishing them to Tableau Server, this can become
problematic. One workaround solution to manage this is to wipe these details from
the workbook with a script before sharing or publishing workbooks. This concept is
explored below in Publishing to Tableau Server.

4. https://github.com/KxSystems/kdb/blob/master/c/qodbc3.zip

6

Data visualization with kdb+ using ODBC kx

https://github.com/KxSystems/kdb/blob/master/c/qodbc3.zip

Tableau functionality for kdb+

Calling q from Tableau
Once a successful connection has been made, the next step is to begin by running
some sample queries. Tableau’s Custom SQL is the method by which q queries can
be run from Tableau. In particular, the q() function can be used to send synchronous
queries to kdb+, as shown below.

To demonstrate this, define a table tab in the kdb+ process you are connecting to.

q)N:8
q)dates:2018.03.28 + til 3
q)tab:([] date:N?dates;category:N?`CORP`EQ`GOV;volume:N?til 10000)

Then, in Tableau run the following in the Custom SQL.

7

Data visualization with kdb+ using ODBC kx

Now the data in the table tab is available for use in Tableau. Note that if tab is a not
a partitioned table (and is small enough to be handled via SQL), you can just type its
name into the table selector, there is no need to use q('select from tab'). Other
acceptable syntaxes are:

q('tablename')
q('select from table where date in 2018.07.02')
q('function',<Parameters.Date>)
q('{[mydate] func[…]}',<Parameters.Date>)

Queries can be a simple select statement or can become much more complex and
flexible using inbuilt parameters supplied by Tableau, which will be demonstrated in
the next section.

Known SQL compatibility issues

• SQL string literals are trimmed like q symbols

• MIN() and MAX() don’t work on strings

• q strings and booleans lack nulls, therefore SQL operations on null data resulting in these
types ‘erase’ nulls

• COUNT and COUNT DISTINCT don’t ignore nulls

• SQL selects from partitioned tables are not supported – one should pre-select from a
partitioned table using the q() function instead

Datatypes
Tableau caters for multiple q datatypes.

qTableau

Symbol, StringString

DateDate

TimestampDate & Time

Int, floatNumerical

BooleanBoolean

On loading data, Tableau automatically interprets the datatype of a field. It is
recommended that the user checks these have been interpreted correctly after the
data is loaded. If it is incorrect, the datatype can then be easily changed on the Data
Source page or in the Data pane as shown below.

8

Data visualization with kdb+ using ODBC kx

Simple parameters
Tableau parameters provide further flexibility when working with q functions. To
demonstrate, define a function func that selects from the table tab defined above.
This function can be called from Tableau using Tableau-defined parameters.

9

Data visualization with kdb+ using ODBC kx

func:{[mydate;mycategory]
select from tab where date in mydate, category in mycategory
};

Take the parameter mycategory: in this example, a list of allowable symbols that are
acceptable for the parameter mycategory can be defined in Tableau.

This can be done in the Custom SQL stage when you are writing your query. These
parameters can then be shown and made available for users as a dropdown list on
worksheets and dashboards as can be seen below.

10

Data visualization with kdb+ using ODBC kx

Tableau parameters are limited to static values, and a single select option when placed
in a view. However, there are ways to make them more dynamic and flexible. This
will be explored below in Dynamic Parameters.

Tableau filters
As shown above, parameters are a useful tool for creating user-defined inputs to
visualizations. However, there are cases where the user may want to return the entire
data set first and only afterwards reduce the data set. This can be achieved using
Tableau’s filters.

Tableau Category Parameter as defined in the previous section

Tableau Category Filter

11

Data visualization with kdb+ using ODBC kx

Filters are the standard way to reduce the set of data displayed on a worksheet. Note
from the above screenshots that filters are not limited to a single select option as
parameters are.

Filters are most effective with fast queries on small datasets. For longer queries and/or
larger datasets, filters become challenging from a performance point of view. This is
because every time a filter selection is changed, the Custom SQL query runs the same
query multiple times per view to build dimensions. Therefore the more filters and
dimensions you add to a view, the slower performance becomes.

Caching
One way to get around this inefficiency is to introduce caching in kdb+. Caching is
storing results from previous queries or calculations in an internal lookup table (or
cache) for faster data retrieval on subsequent queries. Caching here is being used to
address the problem of filters causing queries to be re-run.

The following example demonstrates the performance improvement of caching when
incorporated into a simple q function, getTotalVolume (below), which extracts the
total volume by symbol from a table t.

The demonstration table t contains randomly-generated mock data of symbol and
volume values.

N:100000000;
t:([] sym:N?`3;volume:N?10.0);
// Function used to compute the total volume by symbol from the table t
getTotalVolume:{[syms]
select totalVolume:sum volume by sym from t where sym in syms
};

12

Data visualization with kdb+ using ODBC kx

Below is sample output of this function when called from Tableau. Query response
times for an increasing number of symbols runs from hundreds of milliseconds to
seconds:

timenumber of symbols

13 ms1,000,000

120 ms10,000,000

1038 ms100,000,000

To incorporate caching, the existing function can be modified to store the total volume
result for each queried symbol in a keyed table, called volumeCache. Whenever the
function is called from Tableau, an internal lookup is performed on the volumeCache
table to determine if the calculation for the requested symbol has already been
performed. If so, the result can be immediately returned, otherwise a calculation
against the table t is performed.

13

Data visualization with kdb+ using ODBC kx

volumeCache:([sym:`u#`symbol$()];totalVolume:`float$())
getTotalVolume:{[syms]
if[-11h~type syms;syms:enlist syms];
// Get the list of syms which contain entries in the volumeCache
// Extract the totalVolume values for those symbols
if[count preCalculated:([]sym:syms) inter key[volumeCache];

result:select from volumeCache where ([]sym) in preCalculated
];
// If all syms are contained in the volumeCache then return result
if[not count notPreCalculated:([]sym:syms) except key[volumeCache];
:result

];
// For syms not present in volumeCache, perform lookup
result,:newEntries:select totalVolume:sum volume by sym from t where
([]sym) in notPreCalculated;

// upsert new results to volumeCache
upsert[`volumeCache;newEntries];
result
};

Tableau queries against this modified function are significantly faster and become
sub-millisecond when symbols are already present within the volumeCache. This
approach greatly reduces the effect of filtering previously highlighted:

time (2nd query)time (1st query)number of symbols

<0ms3 ms1,000,000

<0ms96 ms10,000,000

<0ms1021 ms100,000,000

Dynamic parameters
As mentioned above in Simple parameters, Tableau parameters are limited to static
values, and a single select option when placed in a view. However, there are a number
of ways to make parameters smarter, and can increase their usability and flexibility.
Below, two such methods are described.

Predefining parameter options in a q function

From the previous example, the input parameter Category is limited to single values.
This can be made more flexible by defining in the function a range of acceptable values.
In the example below, the argument `all leads to a select with no restriction on
category.

func:{[mydate;mycategory]
$[mycategory=`all;
select from tab where date in mydate;
select from tab where date in mydate, category in mycategory]

};

14

Data visualization with kdb+ using ODBC kx

Then all can be added to the list of predefined values in Tableau’s definition of
Category:

Using parameters with calculated fields

Using parameters in conjunction with Tableau’s calculated-field functionality can be
a convenient and flexible tool in calculations as well as graphical representation. This
is useful when the output the user wants to see is dependent on an input parameter,
and a field needs to be adjusted accordingly.

For example, in the user-defined Calculation1 logic below, the quantity field will be
divided by a different amount depending on the chosen Category value.

15

Data visualization with kdb+ using ODBC kx

Below is sample output from when the user selects a Category value of EQ.

In contrast, when the user selects CORP the calculated field will be divided by 50.

Multiple data sources
Kdb+ is efficient at joining data sets, and can easily do so in memory at the gateway
level. However, it is also worth noting that it is possible to join two or more different
datasets in Tableau if they share a common dimension or key. This can be useful when
it is desirable to join certain datasets for reporting purposes only.

Tableau maintains connections to multiple data sources via a number of open live
connections to a q instance. This functionality makes it possible to use the results
from one data source to filter another. So far, in this paper, the examples have described
functionality using only one data source. For the rest of this section, working with
multiple data sources and joining them in Tableau will be explored.

16

Data visualization with kdb+ using ODBC kx

One of the first things to note is that fields from different data sources can be included
on the same worksheet, provided the sources are mapped to each other. In Tableau,
fields from different data sources can be mapped to each other even if they have a
different name, so long as they are the same datatype. This can be controlled and
edited in Data > Edit Relationships.

Actions

Once a dashboard is created, the filters are controlled in Dashboard > Actions. When
setting up actions for kdb+ data sources, it is important to note how the selection is
cleared. For large datasets, it is recommended that you select the action Exclude all
values. This feature prevents data from being displayed in Sheet 2 until data is first
selected in Sheet 1. This has a very significant effect on performance as it means
Tableau only builds dimensions for views within the dataset that has been filtered.

Target Sheets

The following example demonstrates how much of an improvement on performance
this feature can have. Once a table t is defined and subsequently called from Tableau,
the next step is to create a dashboard.

q) N:10000000
q) t:([] sym:N?`3;volume:N?10.0)

17

Data visualization with kdb+ using ODBC kx

Step-by-step instructions on how to build the dashboard shown below and performance
tests can be found in Appendix A.

18

Data visualization with kdb+ using ODBC kx

Action Selection: Show all values

19

Data visualization with kdb+ using ODBC kx

Action Selection: Exclude all values

Using the Exclude all values option yields a clear performance improvement.
Computing time reduces from ~45secs per select/deselect down to ~0.3ms. Also, when
using Exclude all values there is no Executing Query time.

Exploiting this feature can be hugely useful when working with kdb+ and Tableau
where the volume of datasets can be very large.

20

Data visualization with kdb+ using ODBC kx

Publishing to Tableau Server

As mentioned above, to share workbooks between Tableau Desktop and Tableau
Server you can publish the former to the latter. Tableau provides detailed
documentation and instructions5 on the general publishing procedure, which involves
publishing from within an already-open workbook.

This is not an ideal way to publish workbooks that are connected to a kdb+ database,
because connection details are stored within the workbook itself. Take the following
scenario:

• A workbook has been developed in Tableau Desktop and is ready to share to the
Testing partition in Tableau Server.

5. https://onlinehelp.tableau.com/current/pro/desktop/en-us/publish_workbooks_howto.html

21

Data visualization with kdb+ using ODBC kx

https://onlinehelp.tableau.com/current/pro/desktop/en-us/publish_workbooks_howto.html
https://onlinehelp.tableau.com/current/pro/desktop/en-us/publish_workbooks_howto.html

• Throughout development, a development DSN has been used. But the workbook
needs to be published to a UAT DSN.

• So the DSN details need to be changed to the UAT DSN before publication.

• The workbook again needs to be promoted, this time to the Production partition.

• The workbook must be reopened, and the DSN details changed to the production
DSN, before final promotion to Production.

This process is manual and prone to errors. For kdb+ connections, it is recommended
to use the tabcmd command-line utility which, among other things, enables the user
to publish to Tableau Server from the command line. This utility allows the user to
deploy sheets programmatically, streamlining the process hugely. It also means that
as part of the deploy procedure, the workbook can be edited by a script before
publishing via tabcmd. This means you can do some efficient things like:

• Wipe out the connection details that are automatically embedded in the workbook

• Pick which DSN to point to, e.g. DEV, UAT, QA, Prod

• Pick which Tableau server to publish e.g. tableau.net or tableau-uat.net

• Pick which Tableau environment to publish to e.g. Development, Testing or
Production

• Edit the Tableau project name

Using tabcmd and a script to edit the workbook can be an effective way to make the
publishing process smoother when connecting to kdb+, especially when scaling use
cases and looking to publish across multiple environments and DSNs.

22

Data visualization with kdb+ using ODBC kx

Conclusion

Kdb+ is well known as the world’s fastest time-series database. Kx’s own visualization
tool, Dashboards for Kx, is optimized for this technology. However, kdb+ is flexible
enough to connect with a range of different visualization tools. This whitepaper
demonstrates how to connect to one such visualization tool, Tableau, by means of the
Kx ODBC driver.

You have seen how to set up a connection between kdb+ and Tableau using ODBC,
with detailed instructions on how best to use Tableau’s query functionality, datatypes,
parameters and filters with the q language.

The key takeaways include how kdb+’s caching feature may be used to improve
performance by optimizing repeated queries from Tableau. Further to this, improving
performance when using filters with multiple data sources was explored. The methods
provided in this paper demonstrate that kdb+ and Tableau can be combined in an
efficient way despite limitations that occur when combining the two technologies.

If the question is ‘Is Tableau the best, and best performing visualization tool when
combining with kdb+?’ , the answer is ‘No. There are other visualization tools better
tailored to the kdb+ technology, for example Kx’s visualization solution Dashboards
for Kx.’ But if the question is ‘Can you combine these two technologies in an effective
way?’ the answer is ‘Yes’ , and by applying the functionality described in this paper
to work around limitations, to connect a Tableau visualization front-end to a kdb+
back end.

23

Data visualization with kdb+ using ODBC kx

Appendix A

1. Create Sheet 1

1. Drag and drop sym to Columns.

2. Drag and drop Number of Records to Rows.

3. Drag and drop volume to the Marks pane on color. Right-click and pick Discrete.

2. Create Sheet 2

1. Drag and drop sym to Rows.

2. Drag and drop volume to Rows. Right-click and pick both Dimension and
Discrete. This means every row will be displayed and not just the summed
value.

3. Create Dashboard 1

1. Drag Sheet 1 onto the top of the dashboard.

2. Drag Sheet 2 onto the bottom of the dashboard.

4. Make Sheet 1 a filter for Sheet 2 on the dashboard.

1. Hover over Sheet 1 and on the top right-hand side select the middle icon that
looks like a filter.

5. Testing performance with default filter selection

1. Pick Help > Settings and Performance > Start Performance Recording

2. Select and deselect some of the bars in the top graph. You should notice much
slower performance on deselect.

3. Pick Help > Settings and Performance > Stop Performance Recording

A performance workbook will then pop up, and you can analyze the performance.

6. Testing performance with selection Exclude all values

1. Pick Dashboard > Actions > Edit > Select ‘Exclude all values’

2. Repeat step 5

A second performance workbook will pop up and can be compared with the
previous one to analyze performance.

24

Data visualization with kdb+ using ODBC kx

	Connecting to kdb+ using ODBC
	Tableau functionality for kdb+
	Publishing to Tableau Server
	Conclusion
	Appendix A

