kx it's about time

Technical Whitepaper

Date

Authors

December 2018

Daniel Irwin is a kdb+ consultant based in Singapore. He
worked on a global cross-asset Kx for Surveillance
implementation for a major international banking group
before moving to one of Asia’s largest sovereign-wealth
funds to develop a solution for best execution and
transaction-cost analysis.

Jeremy Lucid is a kdb+ consultant based in Belfast. He
has worked on real-time Best Execution projects for a
major multinational banking institution, and a Kx for
Surveillance implementation at a leading options and
futures exchange

Contents

Blockchain as a databaseccocviviiiiiniiiiiniiiie 5
BlOCK €XPIOTETS ..ottt 7
Installing a Bitcoin full NOAEecccoveueviieiinciiniicccc e 10
Interacting with @ full NOAec.cceveirieiinieiiice e 11
Parsing the Bitcoin blockchain data ..o, 13
Storing the Bitcoin blockchain data ..o 15
Exploring the Bitcoin blockchain ..o, 26
CONCIUSION ..ttt s 29

APPEINAIX ettt ettt b e sttt b b naes 30

Storing and exploring the Bitcoin blockchain

For over a decade, Kx technology has played an important role in the growing financial
system by providing an integrated platform consisting of a high-performance kdb+
database, in-memory compute engines and real-time streaming processes. For example,
across the largest financial institutions, kdb+ time-series databases are utilized for the
real-time capture, processing and storage of the worlds market data streams, providing
the backbone for high-frequency trading and real-time market surveillance systems. The
ability of the technology to maximize hardware utilization, and achieve scale, has resulted
in a natural demand for the technology across other data-intensive domains from the
Internet of Things (IoT) to machine learning.

One domain which is currently experiencing rapid growth and innovation is blockchain,
primarily peer-to-peer cryptocurrency systems built on public blockchains. Just as
traditional financial institutions in the past faced scaling challenges, cryptocurrency
businesses, such as exchanges and wallet providers, face many of the same growing pains
associated with an increasing user base. Kx technology can help meet these challenges
and deliver scalability confidence. As a case in point, kdb+ is currently utilized to meet
these scaling demands at the Bitcoin-denominated trading platform, BitMEX!, one of the
fastest growing cryptocurrency exchanges in the world. In addition, in the area of private
blockchain based development, kdb+ has been incorporated alongside the post-trade
processing application Babylon?, developed by Cobalt DL, to provide fast data processing.
Such integrations are part of a broader strategy to integrate kdb+ with blockchain related
applications and services, which are increasingly likely to play a major role in the evolution
of financial technology in the coming years.

As part of the exploration into blockchain, this paper focuses on the important area of
blockchain explorer technology which provides a convenient means for users to monitor
their cryptocurrency transactions and funds, while also providing insightful metrics on
the overall state of a network, such as the number of transactions occurring per block,
the number of unique/active addresses, the volumes of currency being transacted and
the mining hash rate, to mention a few.

This paper examines how a simple blockchain explorer can be constructed using kdb+
to efficiently store and query over nine years’ worth of Bitcoin transactions, consisting

1. https://kx.com/news/kdb-powers-trading-platform-bitmex-high-frequency-bitcoin-exchange/

2. https://kx.com/blog/kx-technology-integrated-into-innovative-blockchain-trade-processing-platform/

https://kx.com/news/kdb-powers-trading-platform-bitmex-high-frequency-bitcoin-exchange/
https://kx.com/blog/kx-technology-integrated-into-innovative-blockchain-trade-processing-platform/

of over half a million validated blocks, while making use of native performance-enhancing
techniques such as partitioned databases, splayed tables, intraday write-downs, in-memory
table joins, on-disk and in-memory attributes, and optimally structured queries.

Topics covered include a brief overview of the blockchain database structure and the
steps required to install and run a Bitcoin full node, which for this demonstration is
required to retrieve fully validated historical and real-time Bitcoin transaction information
from the network. Examples will be provided to demonstrate how a user may begin to
parse the blockchain with a few simple steps, converting retrieved data to kdb+ format
for on-disk storage, together with an overview of the performance improvement techniques
which can be applied to minimize memory requirements and maximize data extraction
speeds.

Blockchain as a database

Blockchain is a database structure which consists of a collection of linked blocks, where
each block contains information such as financial transaction records. Blocks are linked
to one another cryptographically, by including the hash of the previous block in the
current block. By including the previous block hash in every newly created block, a unique
link is created to all past records, meaning previous transactions cannot be altered without
breaking the cryptographic link and being detected, an important feature in maintaining
data integrity.

This blockchain structure was proposed and utilized by Satoshi Nakamoto? as the ledger
where all transactions occurring on the global Bitcoin network could be stored and
maintained. In a distributed network like Bitcoin, there is not a single global ledger of all
transactions, but instead each participant computer or ‘Full Node’ in the network
maintains their own running copy of all transactions and blocks which they independently
and continuously validate. Full nodes help the network by accepting transactions and
blocks from other full nodes, validating those transactions and blocks, and then relaying
them to other full nodes in the network. Such node technology is run by individual users,
exchanges, wallet providers and payment processors, and is described further in the
following section.

In conjunction with the blockchain database, Bitcoin includes a consensus mechanism
called Proof-Of-Work which enables network participants to reach agreement on the
state of the ledger (which transactions are valid, and which are not), by following a
protocol with consensus rules as opposed to having to trust a central party. Within such
a system, each participant in the network can come to agreement on the next set of
transactions to be included into a block, and added to the chain, however, there is a severe
computational cost associated with removing or altering existing blocks. In practical
terms, the resultant energy barrier associated with this computational cost, makes the
database highly immutable. This immutability is evident in Bitcoin which has a perfect
audit trail of the movement of all bitcoin tokens since it went live back in 20009.

Full Node technology

Computers which participate in the Bitcoin network are called nodes, and those which
fully verify all the rules of the Bitcoin protocol are called full nodes. These nodes are an

3. https://bitcoin.org/bitcoin.pdf

https://bitcoin.org/bitcoin.pdf

integral software component of the Bitcoin network and along with validating all
transactions and blocks, also help relay them to other nodes.

The full-node software is essential for users who wish to use Bitcoin in a non-trust-based
manner to maximize security, privacy and avail of the full Bitcoin functionality. Therefore,
this software is often run by individual Bitcoin users, miners, cryptocurrency exchanges,
wallet providers, payment processors and blockchain analytics providers. Nodes help the
network become more secure and better able to relay transactions globally. Currently,

the Bitcoin network is made up of about 10,000 reachable nodes*.

For the construction of the kdb+-based blockchain explorer described in this paper, a
full node will be required to provide both historical and real-time blocks which will be
used to create the underlying kdb+ database. In the next section, a brief overview of
current blockchain explorer technology will be provided together with examples of the
typical user queries run against them.

4. https://bitnodes.earn.com/nodes/live-map/

https://bitnodes.earn.com/nodes/live-map/

Block explorers

The full-node software described above is open-source and free to download, making it
possible for anyone to submit transactions to the network independently and keep a copy
of all transaction history. However, running a Bitcoin full node comes with certain
hardware costs, see requirementss, so many users who do not wish to run their own full
node can instead use one of the many explorer services that provide transaction, address
and block lookup abilities online.

A block explorer is an application that typically runs alongside a full node, taking the
data provided by the node and converting it into a more human-readable format. It is
accessible in the form of webpages which use hyperlinks to allow users to easily navigate
between block data, transaction data and address information. Below are examples of
popular block explorers together with the underlying database upon which they are built.

explorer underlying database

blockexplorer.com6 SQL
blockchain.com?7 SQL

bitpay.com8 MongoDB

Users with access to these services typically use them to perform lookups by a Bitcoin
address, a transaction identifier or a block number they are interested in. Below is a brief
summary of what these addresses and identifiers look like and the typical results returned
from an explorer given these inputs.

Bitcoin addresses

A Bitcoin address is a string of 26-35 alphanumeric characters that allow for Bitcoin
payments. Users wishing to receive Bitcoin for payment can generate addresses
independently using one of the many free wallet applications available. A valid Bitcoin
address can be searched for using a block explorer to get a full history of all the transactions
associated with that address.

5. https://bitcoin.org/en/full-node#secure-your-wallet

6. https://blockexplorer.com/
7. https://www.blockchain.com/en/explorer
8. https://insight.bitpay.com

https://bitcoin.org/en/full-node#secure-your-wallet
https://blockexplorer.com/
https://www.blockchain.com/en/explorer
https://insight.bitpay.com

For example, the address 1andreas3batLhQa2FawlljeyjCqyBzypd is searched for in the
blockchain.com explorer?, showing the current balance and history of transactions.

Addresses use a modified version of Base58 binary-to-text encoding called Base58Check

encodingl® rather than the standard Base64. This type of encoding was introduced in
Bitcoin and has since been applied to multiple cryptocurrencies and other applications.
For more information on the different address types and how they can be generated, see

Addresses!l,

Transaction identifiers

A Bitcoin transaction is the transfer of value from one address to another, where a single
transaction can contain multiple inputs and outputs. For example, the following tree
chart!? illustrates this well, where a single input of 14.34 BTC is spent to over 50 output
addresses.

A Bitcoin transaction identifier (TXID) is simply a number associated with a transaction
and is a 32-byte hexadecimal (Basel6). The diagram below illustrates how Bitcoin
transactions work, where outputs from one transaction (the leftmost transaction) later
become inputs for the subsequent (rightmost) transaction. An output from a transaction
which has yet to be spent is referred to as an unspent transaction output (UTXO).

Each input spends a previous output

Transaction Transaction

50 BTC n Out 0.8 BTC

49.5 BTC

Each output waits as an unspent transaction (UTXO) until a later input spends it

Block explorers are often used to perform lookups by TXID and this should return all
details of the transaction including, send address, receive address, amount sent and the

9. https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd
10. https://en.bitcoin.it/wiki/Base58Check_encoding
11. https://en.bitcoin.it/wiki/Address

12. https://www.blockchain.com/btc/tree/384914557

https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd
https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Address
https://www.blockchain.com/btc/tree/384914557
https://www.blockchain.com/btc/tree/384914557

block number the transaction was included in. For example the first real-world

transaction!3 made by two Hungarian software architects who bought two pizzas from
Papa John’s. It is formally known as the world’s most expensive pizza.

13. https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16¢5cf302fc80e9d 5fbf5d48d

https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d
https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d

Installing a Bitcoin full node

The most popular and trusted implementation of full nodes is called Bitcoin Core, and
its latest release can be found on Github!4.

The software is very lightweight and is supported on Windows, macOS, and Linux. Below
are the install steps for a Linux machine running Ubuntu 18.04.

For more details on the installation process see instructions!s.

1. Install the packages.

$ sudo apt-get install bitcoind

1. Create a bitcoin.conf file for a full node implementation.

Maintain a full transaction index, used to query the node historically.
txindex=1

[rpc]

Accept command line and JSON-RPC commands.

server=1

rpcuser=<username>

rpcpassword=<password>

Start up the Bitcoin Core daemon.

$ bitcoind -daemon

The bitcoind daemon is a headless daemon which syncs with other nodes on the network
on start-up and provides a JSON-RPC interface to enable easy integration with other
software or payment systems.

For first time installation, the node will go through the Initial Block Download (IBD)
process, which may take a considerable amount of time as it needs to download and
validate the entire blockchain which is roughly around 220GB.

14. https://github.com/bitcoin/bitcoin/releases

15. https://bitcoin.org/en/full-node#linux-instructions

https://github.com/bitcoin/bitcoin/releases
https://bitcoin.org/en/full-node#linux-instructions

Interacting with a full node

When the bitcoind application is running, the Bitcoin Core Remote Procedure Call
(RPC) service listens for HTTP POST requests on port 8332 by default, and the service
binds to your server’s localhost network interface so it’s not accessible from other servers

unless otherwise specified by your node configuration?e.

There are many options available to interface with a running node. The most common
command line tool is the bitcoin-cli, which is installed as part of Bitcoin Core, but it
is also possible to interface using any of the open-source client libraries, available in most
modern programming languages including C++, Python and Java. This demonstration

will make use of a native q library, gbitcoind!?, detailed later below, and in the Appendix.
Example interaction using bitcoin-cli:
The bitcoin-cli program can be used as a command line interface (CLI) to Bitcoin Core.
For example, to safely stop your node we can use the following command:

$ bitcoin-cli stop
Alternatively, it can be used for making JSON-RPC calls to the node for information:

1. Get the hash value of the first Genesis block

$ bitcoin-cli getblockhash 0
000000000019d6689c085ae165831e934ff763ae46a2abc172b3f1b60a8ce26f

1. Using the block hash, return information about the block.

$ bitcoin-cli getblock \
"000000000019d6689c085ae165831e934ff763ae46a2abc172b3f1bb60a8ce26f" 1

16. https://www.multichain.com/qa/780/rpcallowip-to-give-access-to-clients?show=781#a781

17. https://kx.com/blog/securing-digital-assets-a-bitcoin-full-node-api-for-kdb/

"

https://www.multichain.com/qa/780/rpcallowip-to-give-access-to-clients?show=781#a781
https://kx.com/blog/securing-digital-assets-a-bitcoin-full-node-api-for-kdb/

}

"hash": "000000000019d6689c085ae165831e934ff763ae46a2abc172b3f1b60a8ce26f",
"confirmations": 544077,

"strippedsize": 285,

"size": 285,

"weight": 1140,

"height": 0,

"version": 1,

"'versionHex": "00000001",

"merkleroot": "4a5ele4baab89f3a32518a88¢c31bc87f618f76673e2cc77ab2127b7afdeda33b",
"tx": [

"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"

1,
"time": 1231006505,

"mediantime": 1231006505,

"nonce": 2083236893,

"bits": "1dOOffff",

"difficulty": 1,

"'chainwork": "000100010001",
"nTx": 1,

"nexthlockhash": "00000000839a8e6886ah5951d76f411475428afc90947ee320161bbf18eb6043"

Using .].k18 we can easily transform this JSON message output into a q dictionary.
However, using this method to interact with the node requires making system calls to
bitcoin-cli within a q session, and becomes very cumbersome when trying to submit
complex requests.

Instead, with the gbitcoind?!® library, we can communicate directly with the node and

wallet software inside a g session by interfacing with the JSON-RPC server using . (. hp20

to generate valid HTTP POST requests. See the install instructions?L.

The library comes with a wide range of supported functions?? which cover almost all
Bitcoin Core APIs, however, for this application, only two of the supported functions will
be required.

18. http://code.kx.com/q/ref/dotj/

19. https://github.com/jlucid/qgbitcoind

20. http://code.kx.com/q/ref/dotq/#qhp-http-post

21. https://github.com/jlucid/qbitcoind/blob/master/README.md

22. https://github.com/jlucid/qgbitcoind/wiki/Supported-Functions

12

http://code.kx.com/q/ref/dotj/
https://github.com/jlucid/qbitcoind
http://code.kx.com/q/ref/dotq/#qhp-http-post
https://github.com/jlucid/qbitcoind/blob/master/README.md
https://github.com/jlucid/qbitcoind/wiki/Supported-Functions

Parsing the Bitcoin blockchain data

To extract block data from the locally-running node we can make use of the following
functions in the gbitcoind library.

.bitcoind.getblockhash23

This function is called first and takes as argument an integer value corresponding
to the block height, and returns the header hash of the block at that given height.
The block height is simply the number of blocks preceding a block on the chain.
For example, the genesis block has a height of zero since no blocks preceded it.

.bitcoind.getblock?

This function takes the block hash value returned from the previous call and uses
it to extract the block information. This data can be subsequently parsed and stored
in kdb+ tables.

Since the block height begins from a value of 0 and increases in increments of 1 for each
new block, we can repeatedly call the above functions starting from an index of 0 and
working up to the latest block. Below is an example script showing how this can be
implemented using the above functions in combination.

Block extraction

To download blocks in an automated and recursive way, we can specify the block retrieval

logic within a .z.ts25 function which will get executed periodically by setting the timer
value \t.

By initializing the index value to zero and incrementing it each time .z.ts is called we
can download blocks in an iterative way, as shown below. Within the .z.ts function, an
if statement is present to check for a hash value of On, which indicates the next block
has not been mined yet. Once a null value is returned, this indicates that the initial
download process has completed, and the process is in sync with the full node. Thereafter,
new blocks will become available every ten minutes on average.

23. https://github.com/jlucid/gbitcoind/wiki/Supported-Functions#getblockhash
24. https://github.com/jlucid/gbitcoind/wiki/Supported-Functions#getblock

25. https://code.kx.com/q/ref/dotz/#zts-timer

https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblockhash
https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblock
https://code.kx.com/q/ref/dotz/#zts-timer

index:startHeight:0f
.2.ts:{[]
Hash:.bitcoind.getblockhash[indexI[‘result];
if[not On~Hash;
-1(string .z.p)," Processing Block: ",string[index];
processBlock[Hash];
index+:1
13
}
processBlock:{[Hash]

Block:.bitcoind.getblock[Hash;(enlist ‘verbosity)!(enlist 2)1;
}

In the example above, data from each block extracted from the node will be stored in the
local variable named Block. Since the object is a q dictionary, data within can be easily
manipulated and split to populate different table schemas which can be saved to disk as
the user specifies.

The above functionality is the basis for the qExplorer2¢ script which was used to extract
and store the Bitcoin blockchain data to a kdb+ on-disk database. In this script, the
processBlock function contains the subsequent logic to extract and insert the block data
to in-memory tables which are subsequently written to disk periodically. Once a block
height of 550,000 was reached, the process was shut down so that an analysis could be
applied to a static database with a fixed number of blocks.

26. https://github.com/jlucid/qExplorer/blob/master/app/qExplorer.q

14

https://github.com/jlucid/qExplorer/blob/master/app/qExplorer.q

Storing the Bitcoin blockchain data

Tables and schemas

With the above download procedure in place, the next step to storing the blockchain data
is deciding how many tables and databases are required, with the appropriate table schema
and on-disk storage format to use for each.

It was decided to opt for two partitioned databases, named mainDB and refDB, which
would contain the tables listed below. All tables, except utxo, would be stored in splayed??
format, meaning each column is saved as a separate file on disk. This would allow for
subsequent user queries against the kdb+ database to be optimized by only loading
required columns as needed.

mainDB is the primary database where all tables within are constructed from the
information returned by the .bitcoind.getbhlock function call. refDB is a secondary
database consisting of two reference tables, addressLookup and txidLookup, both of
which are used as index tables to track which block number an address or TXID can be
found in.

As will be shown later, these reference tables are used to optimize lookups by address
and TXID performed against mainDB by restricting the search space to a specific block
number and partition value. By knowing the partition number and height value, lookups
on the mainDB tables can be performed far more efficiently.

mainDB
type name content
splayed blocks meta information about a block such as the time it was mined, its size, the
network difficulty
splayed txInfo meta information about the transactions within a block

splayed txInputs all validated and spent Bitcoin transactions
splayed txOutputs all transaction outputs to be spent as inputs in a sequential block

flat file utxo keyed table used to store the list of unspent transactions

27. http://code.kx.com/q/cookbook/splayed-tables/

15

http://code.kx.com/q/cookbook/splayed-tables/

refDB

type name content

splayed addressLookup address, height and partition information

splayed txidLookup TXID, height and partition information

The schema definitions for each of these tables can be found on Github within the tbls28
folder.

Partitioning

All splayed tables mentioned above were further partitioned by using a common column

to group data together. Such partitioned table?? structures help to more easily manage
large datasets and enable query optimization. For more information on the benefits of

partitioned databases, see whitepaper ‘Columnar Database and Query Optimization3? .

For mainDB, each table contains a common column named height corresponding to the
height of the block the data was extracted from. This height value is used to determine
which partition a given set of rows within each table should be stored in.

It was decided to partition the tables by integer values, such that each partition contained
an equal number of consecutive blocks for simplicity. A total block count of 1000 was
chosen arbitrarily for each partition, with the partition integer value being derived from
the row height using the following function

heightToPartition:{[Height;Width]
11 + ‘int$(Height div Width)
}

where the Width value in the formula above corresponds to 1000.

Using this formula, partition directory 1 would contain all tables whose rows contain
height column values ranging from 0 to 999, and partition 2 would contain all rows with
height values ranging from 1000 to 1999, and so on.

Since the Bitcoin blockchain imposes a limit on the size of each block of roughly 1MB,
this in turn results in each partition being roughly the same size after 2016 when Bitcoin
blocks are more consistently full. However, the size of partitions containing data prior to
then are much smaller. Having partitions of roughly equal size is an advantage when it

28. https://github.com/jlucid/qExplorer/tree/master/tbls
29. https://code.kx.com/q4m3/14_Introduction_to_Kdb+/#143-partitioned-tables

30. http://code.kx.com/q/wp/columnar_database_and_query_optimization.pdf

16

https://github.com/jlucid/qExplorer/tree/master/tbls
https://code.kx.com/q4m3/14_Introduction_to_Kdb+/#143-partitioned-tables
http://code.kx.com/q/wp/columnar_database_and_query_optimization.pdf

comes to multi-threaded queries, as it makes it easier to allocate an equal amount of data
to each slave for processing. Below is a sample of the txInfo table, containing the partition
column int.

g)select int,height,size,weight,time,difficulty from blocks where int=30,height=29458
int height size weight time difficulty

30 29458 215 860 2009.12.12D05:21:27.000000000 1

For the refDB tables, a partitioning by int was again chosen, however, unlike the previous
block-height to partition-value mapping, an alternative mapping was chosen to group all
‘similar’ addresses and TXIDs into the same partition.

As previously mentioned, all addresses consist of base58 characters, which are randomly
generated, and so we can group addresses which share a common set of characters. For
this implementation, addresses with the same last two characters would be grouped to a
common partition.

To determine the partition value for an address, we can construct a list of all possible
character pairs and use a reverse lookup by the last two characters of an address to get
its integer position in the list. The position can then be used to determine the partition
value as shown below.

g)characters:"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopgrstuvwxyz"
g)enumerations: $characters cross characters

g)enumerations
*11%1213'14¥1516*17 1819 1A 1B 1CY 1D 1EMTFY 16 THY TV KM ILY MY INY 1P 1Q Y 1R M.
g)partitionValue:1+enumerations?*11

1

With this partitioning scheme, all addresses within a block can be grouped using the last
two characters and written to separate int partitions, together with the block height
number, forming the addressLookup partitioned table. The same approach was used for
partitioning the set of TXIDs, in which case we used the same enumerations list as shown
above since it contained all base16 characters.

With this approach, a search against the addressLookup table in refDB for the block
information associated with the address THFgq6vnpwJxvaDsz8HGA2TgjYYU8Hty 11 would
only need to be performed against the integer partition with value 1. This greatly reduces
the search space required to determine the block height number, which is crucial to
extracting the transaction details from mainDB.

Below are samples of the addressLookup and txidLookup tables generated. Notice that
both tables contain height and partition columns where the values correspond to where

17

the data can be found in the mainDB tables, primarily txInputs and txOutputs. Therefore,
whenever a query by address or TXID is requested, the partition value and height will
first be retrieved from the respective table.

g)select from addressLookup where int=1

int address height partition tag
1 "1MycUHutP9zPJsCqhVAWDmj4rbhKvtYE11" 409 1 E11
1 "Mfio8WrkbbfWTGLPzzr4b8oy6675sCC11" 1627 2 (Wl
1 "GULhpWAhSCmSjfd7LJGNKZhC2KbVQUW11" 3920 4 W11
1 "1mKhgDQNc4jJsWNegtEGTEm2NV4PToK11" 4918 5 K11
1 "1mKhgDQNc4jJsWNegtEGTEm2NV4PToK11" 5807 6 K11
1 "15ZaNMpm3MVVNnN7YjtAQUFBPnDIN3JP11" 6258 7 P11
1 "1JZgXw8QbDkKyKyg78TRGQFFz3dzNeEn11" 11982 12 n11
1 "1PFmtiKvdzgBdcEhQWMeC2orGtWogBJC11" 12407 13 N
1 "49U3rMJif1e2b3KE7geYnrJUoRySKDM11" 17209 18 M11
1 "49U3rMJif1e2b3KE7geYnrJUoRySKDM11" 18059 19 M11
g)select int,-25#'txid,height,partition,tag from txidLookup where int=34
int txid height partition tag

34 "c0ed52575c43f03c6f20d511a" 477 1 1a

34 "9b5528eelbldedacfadf2cdia" 1333 2 dla

34 "940c4b116add23374d887151a" 1676 2 51a

34 "7d527a1949d25a7913a7bcd1a" 2220 3 dla

34 "d8f5eef72af0193df19d7261a" 2229 3 61a

34 "31e42ef0e91ede7062c97aala" 2342 3 ala

34 "cb2f7a82e70f4a00fca32b81a" 2357 3 81a

34 "3f9f168ff36706c964dbab31a" 2431 3 31a

34 "904a640cf38f0b78baabcc11a" 2567 3 1a

34 "a4b0a9dbe7bc8dcalfabbcOla" 2662 3 01a

Showing only the last 25 characters of the txid column values for display purposes.

Attributes on-disk

Since all tables in the mainDB are saved to disk with a common height column, whose
value is naturally sorted in ascending order within each partition of 1000 blocks, it allows
for a straight-forward application of a partitioned attribute to the column on-disk to
optimize all lookups by block height.

This attribute is ideal for optimizing on-disk queries where the column in question is
often queried and filtering by which (in the where clause) greatly minimizes the amount
of data needed to search. This is the case here, since any queries for transaction information
executed against the mainDB tables, will restrict the search to specific blocks by placing a
height restraint leftmost in the where clause, as shown in section ‘Reference HDB with
lookup tables’ .

Similarly, within refDB, both the addressLookup and txidLookup tables have a grouped
attribute applied to a symbol column called tag, shown above. This column contains the
last three characters of the address or TXID string, but is stored as a symbol. This grouped
attribute is used to minimize the number of string comparisons performed when searching
for an address or TXID within a given partition.

For more information on the performance enhancements achieved by on-disk attribute
application, refer again to the whitepaper Columnar Database and Query Optimisation32.

Memory management

An important consideration for the blockchain download process was that it be flexible
enough to run on mid-range systems without consuming too much memory. With new
blocks being extracted and processed every 100ms during the initial download period, a
lot of computation is performed in-memory, and the following steps were taken to
minimize the memory footprint:

Periodic write (append) to disk

The download script can be configured to append in-memory tables to disk and clear
in-memory tables on a specified period. This helps restrain the amount of data required
to be held in memory. For the download script, a write-down frequency of 100 blocks
was chosen. This option is suitable for the initial download of historic blocks, however,
once the process is in sync and has received the latest block, an append frequency of 1
would be more appropriate as new blocks are likely to be received every 10 minutes
thereafter. Below is an example of how the processBlock function, shown earlier, can
be modified to write to disk every 100 blocks and clear in-memory tables.

32. https://kx.com/media/2017/11/Columnar_database_and_query_optimization.pdf

19

https://kx.com/media/2017/11/Columnar_database_and_query_optimization.pdf

mainDB:":/home/path/to/mainDB/
writeFreq:100

width:1000

thlList: ‘txInfo'blocks‘txInputs*txOutputs

processBlock:{[Hash]

Block:.bitcoind.getblock[Hash;(enlist verbosity)!(enlist 2)1;

1111111111111111117

// Save Block data to internal tables txInfo,

// blocks, txInputs and txOutputs

1111711111111111117

if[writeFreq~1f+(index mod writeFreq);
saveSplayed[mainDB;heightToPartition[index;width]l;Jleach thllist;
clearTables each tbllist
13

}

saveSplayed:{[Location;Partition;TableName]
Path:hsym ‘$"/"sv (string[Location]l;string[Partition];string[TableNamel,"/");
.[Path;(); $[()~key Path;:;,1 ;‘.[TableNamell
}

clearTable:{[TableName]
@[‘.;TableName;0#]
}

heightToPartition:{[Height;Width]

11 + ‘int$(Height div Width)
}

For more information on similar intraday write-down solutions, see the whitepaper

Intraday Writedown Solutions33.

Garbage collection

As part of the download process, the .(.gc3* function is called periodically to return
unreferenced memory to the heap.

Serialize complex columns

Even after executing .(.gc at the end of each table write-down event, it was noticed that
there still persisted a build-up of heap memory over time. This was caused by the complex
columns scriptSig and scriptPubKey which were nested tables, causing the memory

33. http://code.kx.com/q/wp/intraday_writedown_solutions.pdf

34. http://code.kx.com/q/ref/dotq/#qgc-garbage-collect

20

http://code.kx.com/q/wp/intraday_writedown_solutions.pdf
http://code.kx.com/q/ref/dotq/#qgc-garbage-collect

to become fragmented and difficult to release back to the OS3>. A simple workaround for
this was to serialize the values using -8 !3¢ before inserting into the tables.

Compression

To minimize on-disk memory, all tables are stored across partitioned databases in a

compressed format. This was achieved by setting .z.zd37 to a value of 17 2 6 prior to
writing.

q).z.zd:17 2 6

The above setting resulted in a compression ratio of 2.7 on average. For more information

on compression settings and performance, see whitepaper Compression in kdb+38

Assigning appropriate data types

When using the RPC calls, often data can be returned with an inappropriate data type.
For example, the below height value is returned as a float type, when a long would be
more appropriate. By performing a simple type cast, substantial memory savings can be
made.

q)Block:.bitcoind.getblock[Hash;(enlist ‘verbosity)!(enlist 2)]
q)Block[‘result][*height]

435675f

// Before a casting to long

0)“j”Block[‘result][‘height]

435675

Maintaining a UTXO table

As part of the blockchain download process, the txInputs table is populated with the
input information for each transaction, namely, the Bitcoin being spent. The table schema
is given as follows.

35. http://code.kx.com/q/ref/dotq/#qgc-garbage-collect
36. http://code.kx.com/q/ref/internal/
37. http://code.kx.com/q/ref/dotz/#zzd-zip-defaults

38. http://code.kx.com/q/wp/compression_in_kdb.pdf

21

http://code.kx.com/q/ref/dotq/#qgc-garbage-collect
http://code.kx.com/q/ref/internal/
http://code.kx.com/q/ref/dotz/#zzd-zip-defaults
http://code.kx.com/q/wp/compression_in_kdb.pdf

txInputs:([]
height:*1long$Q);
txid: ();
prevtxid: ();
n:int$Q);
inputValue:‘float$Q);
addresses:();
scriptSig:();
sequence: ‘float$();
txinwitness:()

);

The columns prevtxid and n are returned directly from the .bitcoind.getblock function
call and correspond to the transaction’s ID (prevtxid) and output index (n) value, which
uniquely define the transaction input (i.e. the Bitcoin being spent).

However, to give the user a more complete and comprehensive history of a transaction
and to enable more efficient lookup performance later, we would prefer that the txInputs
table also contain the sending address information (addresses) and input BTC amount
(inputValue) information also.

To retrieve the address and amount information, it would be possible to perform a lookup
on the transaction outputs table, txOutputs, over all previous blocks using the transaction
ID and output index information. However, this would be very slow to perform for each
transaction during the download process.

Instead, to achieve better performance, an internal table called utxo was used to maintain
arunning list of all unspent transaction outputs, containing the address and value amount.
The table was keyed on a string column, called txuid, which is the concatenation of tx1id
and n from the txOutputs table. The combination of these two values is used to create a
unique identifier for each UTXO. To this unique key a unique3? attribute (* u#) was applied,
which greatly accelerates the subsequent left join with the txInputs table. Below is
summarized the join procedure followed.

39. http://code.kx.com/q/ref/elements/#attributes

22

http://code.kx.com/q/ref/elements/#attributes

g)select prevxid,n from txInputs
prevtxid n

"4295cd1f56c7f5b5f44f6a2bf098961623b777344796de381de1142a0686ab75" 0
"4295cd1f56c7f5b5f44f6a2bf098961623b777344796de381de1142a0686ab75" 1

g)utxo
txuid | inputValue address
|
"42...42a0686ab750" | 0.00396241 "1MsdXWEwZouK1640M6vUWVFueYADpg2DZm"
"42...42a0686ab751"| 0.018173 "18DWzYt795x3UfbzFXs2quamshXpidx6g2"

g)txInputs:update txuid:(prevtxid,'string[n]) from txInputs
g)txInputs:txInputs 1j utxo
n txuid inputValue address

0 "42..42a0686ab750" 0.00396241 "1MsdXWEwZouK1640M6vUWVFueYADpgq2DZm"
1 "42..42a0686ab751" 0.018173 "18DWzYt795x3UfbzFXs2qugmshXpidx6g2"

To keep the in-memory footprint of the UTXO table to a minimum, records were removed
whenever an output was spent. As a result, during the download process, the number of
rows in this table is exactly the number of UTXOs available. Below is a plot of the table
count versus block height, showing the gradual increase in UTXOs over time.

Unspent Transactions By Block

80000000
70000000
60000000
50000000
40000000
30000000
20000000
10000000

0

0 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000 275000 300000 325000 350000 375000 400000 425000 450000 475000 500000 525000 550000

Reference HDB with lookup tables

As described previously, the purpose of the refDB tables addressLookup and txidLookup
is to keep track of the partition number and block height values the transaction
information associated with an address or TXID can be found in the mainDB tables. Doing
a brute-force exhaustive search on the txInputsor tx0utputs tables for a single address,

23

without being able to restrict the search space using the partition number or block height
value, would result in an enormous number of string comparisons and very slow lookup
times. Instead, a sample query to discover the height and partition values for a given
address can be performed as follows.

First, the last two characters of the address are used to compute the partition number in
refDB, and the last three characters are used to derive the tag column value which is
used to minimize the number of string comparisons and accelerate the lookup.

g)Addr:"1koSYoTVcBLV1dHMLgRI4CvAqtvvx6n5E"

q)Tag: ‘$-3#Addr

q)Part:1+enumerations?(*$-2#Addr)

g)select from addressLookup where int=Part, tag=Tag, address like Addr

int address height partition tag
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 272900 273 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5E" 272906 273 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 275274 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5E" 275316 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 275574 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 275576 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5E" 275656 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 275660 276 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 277999 278 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbnSE™ 278000 279 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbnSE™ 278011 279 nSE
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvxbn5SE" 278013 279 nSE

With the above height and partition value information, subsequent lookups on the
txInputs and txOutputs tables in mainDB are greatly simplified and fast.

g)Addr:"1koSYoTVcBLY1dHMLgRI4CvAqtvvx6n5E™
g)first select from txOutputs where int=273,height=272900,address like Addr
int | 273

height | 272900

txid | "1a3febb07e3fd5bc8f7b4169f282c8c5726F92d604ec4547aabed00f4df20018"
outputValue | 5.05

address I "1koSYoTVcBLV1dHMLgR94CvAqtvvxbnSE"

n 0i

@)\t first select from txOutputs where int=273,height=272900,address like Addr
10

On Github, the script explorer.g4 contains some convenience functions to perform
single and multiple addresses or TXID lookups. Below is shown the result of some sample
inputs.

40. https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q

24

https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q

g)addr:("";

S

g)addr[0]:"16TaPBQgdQ4edcLR5Tj8m6gVqdumx5i915"
g)addr[1]:"1K9QfXnjhqSix7NuzuP2Kmtdg2RzjBi15"
g)addr[2]:"1MB1W3n5gDAMNRN4f6pXjzgMygzSvaq;j15"
g)update -15#'txid from .qexplorer.addressLookupl[addr]

int height txid address inputValue outputValue
71 70527 "51deObcbea7f26f" "16TaPBQgdQ4edcLR5Tj8m6gVqdumx5i915" 50

155 154085 "b9220cd49836a0b" "1K9QfXnjhgSix7NuzuP2Kmtdg2RzjBi15" 50

42 41875 "51cd4d47b41b5cf" "IMB1W3n5gDAMNRNAf6pXjzgMygzSv9qj15" 50

40 39751 "97095783f947345" "16TaPBQgdQ4edcLR5Tj8mbgVq4umx5i915" 50

7 6606 "4014bb15780da78" "1K9QfXnjhqSix7NuzuP2Kmtdg2RzjBi15" 50

42 41369 "6b1b8bdf5bb861d" "1MB1W3n5gDAMNRNAf6pXjzgMygzSv9qj15" 50
q)tX:("";"")

q)tx[0]:"1e743aa7b160cab8e293h902079031a989h7600dd59e00af8856e001d83b63c9"
q)tx[1]:"3aec5c0fe2b03b3fe596e71800d4868751d75ff2cab1e1db34608e2ac7daf8ed"
g)update -15#'txid,-10#"'address from .qexplorer.txidLookup[tx]

int height txid size weight address inputValue outputValue
346 345609 "4608e2ac7daf8ed" 814 3256 "JE2FM8t7GA" 1.458481

346 345609 "4608e2ac7daf8ed" "HruQXk2D2S" 1.458381
346 345609 "4608e2ac7daf8ed" "1tytfu7kQn" 1.458381
346 345609 "856e001d83b63c9" 635 2540 "G7J3mjzfZD" 100.2173

346 345609 "856e001d83b63c9" "EGrZghdGrqg" 100.2173

25

Exploring the Bitcoin blockchain

As mentioned previously, blockchain explorers can also be used to gauge the state of the
network by computing different metrics. Below are some useful metrics which can be
readily performed against the kdb+ database using the functions defined in the
explorer.g4! file.

SegWit address adoption

SegWit (segregated witness) addresses were introduced in block 481824 (2017-08-24) as
a way to reduce the size needed to store transactions in a block and provide protection

from transaction malleability42. One way to track the adoption of this new address format

is to examine all the unique addresses in a block and count how many are of bech3243
address format. The function .qexplorer.segwitAddr, shown below, can be used to
perform this calculation on a single block and returns the number of address per format
type. By using the each adverb, the function can be run over a range of blocks beginning
from height 481824 (partition 481) to the latest block, to measure the adoption increase
over time.

Below is a graph showing the number of addresses by format over a range of blocks.

SegWit Address Adaption

Total Unique Addresses p2pkh p2sh emmmmbech32

6000000
5000000
4000000
3000000
2000000

1000000

481000 484000 487000 490000 493000 496000 499000 502000 505000 508000 511000 514000 517000 520000 523000 526000 529000 532000 535000 538000 541000 544000 547000 550000

41. https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q
42. https://en.bitcoin.it/wiki/Transaction_malleability

43. https://en.bitcoin.it/wiki/Bech32_adoption

26

https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q
https://en.bitcoin.it/wiki/Transaction_malleability
https://en.bitcoin.it/wiki/Bech32_adoption

Mining revenue

Mining revenue is the reward given to a miner for creating a new block and consists of
the coinbase output (Block reward) plus any transaction fees. Currently, the reward alone
is set to 12.5 BTC, but this amount gets divided by 2 every 4 years. This is commonly
known as the Bitcoin halvening, and this reduction in new supply over time follows a
predetermined and predictable schedule. The next halvening is due to occur in 2020
where the reward will be reduced to 6.25 BTC. The below chart shows the total mining
revenue in BTC over time and can be computed by running the .qexplorer.minerReward
function over all block heights.

Average Mining Revenue By Blocks

W Coinbase Reward M Transaction Fees

0 22000 44000 66000 88000 110000 132000 154000 176000 198000 220000 242000 264000 286000 308000 330000 352000 374000 396000 418000 440000 462000 484000 506000 528000 550000

Total number of transactions per block

A simple query which can be extracted from the database is the total number of
transactions per block. This metric can be used to gauge the level of demand for Bitcoin
transactions and block space over time. Below is the results of running the
.gexplorer.totalTx function over all blocks and shows the gradual increase in Bitcoin
transactions over time.

27

Total Transactions By Block

2500000

2000000

1500000

1000000

500000

1000 62000 123000 184000 245000 306000 367000 428000 489000 550000

Conclusion

This paper described how a q process can be built to interact with a Bitcoin full node to
extract and store blockchain transaction data in kdb+ format. By making use of appropriate
schemas, partitioned database structures and query performance techniques it was possible
to create a simple blockchain explorer process to look up transaction information and
perform some interesting blockchain analytics. This application of kdb+ to the area of
blockchain explorer technology is a further step toward better understanding blockchain
data, the unique challenges associated with data retrieval and storage, and potential for
application development using the technology within the domain.

29

Appendix

Qbitcoind is is a q library found on Github# which can be used to interact with the Bitcoin
core full node and wallet implementation. The library allows a user to make requests to
the locally running node via JSON-RPC HTTP requests within a q session. Below are a
few examples of the functionality available.

.bitcoind.getnewaddress4s

Instruct the wallet software to generate a new Bitcoin receive address

.bitcoind.getbalance4s

Request the current balance associate with an address from the node

.bitcoind.sendtoaddress4?

Create a Bitcoin transaction for the node to propagate to the network

.bitcoind.addmultisigaddress4s

Create a multi-signature address for more secure storage

.bitcoind.getrawtransaction4

Get information associated with a transaction (TXID)

.bitcoind.getblockso

Extract information from the blockchain

44. https://github.com/jlucid/qbitcoind

45. https://github.com/jlucid/qbitcoind/wiki/Create-a-receive-address
46. https://github.com/jlucid/qbitcoind/wiki/Address-Balances

47. https://github.com/jlucid/qbitcoind/wiki/Sending-from-a-Hot-Wallet
48. https://github.com/jlucid/qbitcoind/wiki/Multi-Signature-Wallet

49. https://github.com/jlucid/qbitcoind/wiki/Transaction-IDs

50. https://github.com/jlucid/qgbitcoind/wiki/Extracting-Blockchain-Info

30

https://github.com/jlucid/qbitcoind
https://github.com/jlucid/qbitcoind/wiki/Create-a-receive-address
https://github.com/jlucid/qbitcoind/wiki/Address-Balances
https://github.com/jlucid/qbitcoind/wiki/Sending-from-a-Hot-Wallet
https://github.com/jlucid/qbitcoind/wiki/Multi-Signature-Wallet
https://github.com/jlucid/qbitcoind/wiki/Transaction-IDs
https://github.com/jlucid/qbitcoind/wiki/Extracting-Blockchain-Info

	Blockchain as a database
	Block explorers
	Installing a Bitcoin full node
	Interacting with a full node
	Parsing the Bitcoin blockchain data
	Storing the Bitcoin blockchain data
	Exploring the Bitcoin blockchain
	Conclusion
	Appendix

