
kx
Technical Whitepaper

Date December 2018

Authors Daniel Irwin is a kdb+ consultant based in Singapore. He
worked on a global cross-asset Kx for Surveillance
implementation for a major international banking group
before moving to one of Asia’s largest sovereign-wealth
funds to develop a solution for best execution and
transaction-cost analysis.

Jeremy Lucid is a kdb+ consultant based in Belfast. He
has worked on real-time Best Execution projects for a
major multinational banking institution, and a Kx for
Surveillance implementation at a leading options and
futures exchange

Contents

Blockchain as a database ... 5
Block explorers .. 7
Installing a Bitcoin full node ... 9
Interacting with a full node ... 10
Parsing the Bitcoin blockchain data ... 12
Storing the Bitcoin blockchain data .. 14
Exploring the Bitcoin blockchain ... 24
Conclusion .. 27
Appendix ... 28

2

kx

Storing and exploring the Bitcoin blockchain

For over a decade, Kx technology has played an important role in the growing financial
system by providing an integrated platform consisting of a high-performance kdb+
database, in-memory compute engines and real-time streaming processes. For example,
across the largest financial institutions, kdb+ time-series databases are utilized for
the real-time capture, processing and storage of the worlds market data streams,
providing the backbone for high-frequency trading and real-time market surveillance
systems. The ability of the technology to maximize hardware utilization, and achieve
scale, has resulted in a natural demand for the technology across other data-intensive
domains from the Internet of Things (IoT) to machine learning.

One domain which is currently experiencing rapid growth and innovation is
blockchain, primarily peer-to-peer cryptocurrency systems built on public blockchains.
Just as traditional financial institutions in the past faced scaling challenges,
cryptocurrency businesses, such as exchanges and wallet providers, face many of the
same growing pains associated with an increasing user base. Kx technology can help
meet these challenges and deliver scalability confidence. As a case in point, kdb+ is
currently utilized to meet these scaling demands at the Bitcoin-denominated trading
platform, BitMEX1, one of the fastest growing cryptocurrency exchanges in the world.
In addition, in the area of private blockchain based development, kdb+ has been
incorporated alongside the post-trade processing application Babylon2, developed by
Cobalt DL, to provide fast data processing. Such integrations are part of a broader
strategy to integrate kdb+ with blockchain related applications and services, which
are increasingly likely to play a major role in the evolution of financial technology in
the coming years.

As part of the exploration into blockchain, this paper focuses on the important area
of blockchain explorer technology which provides a convenient means for users to
monitor their cryptocurrency transactions and funds, while also providing insightful
metrics on the overall state of a network, such as the number of transactions occurring
per block, the number of unique/active addresses, the volumes of currency being
transacted and the mining hash rate, to mention a few.

This paper examines how a simple blockchain explorer can be constructed using kdb+
to efficiently store and query over nine years’ worth of Bitcoin transactions, consisting
of over half a million validated blocks, while making use of native
performance-enhancing techniques such as partitioned databases, splayed tables,

1. https://kx.com/news/kdb-powers-trading-platform-bitmex-high-frequency-bitcoin-exchange/

2. https://kx.com/blog/kx-technology-integrated-into-innovative-blockchain-trade-processing-platform/

3

kx

https://kx.com/news/kdb-powers-trading-platform-bitmex-high-frequency-bitcoin-exchange/
https://kx.com/blog/kx-technology-integrated-into-innovative-blockchain-trade-processing-platform/

intraday write-downs, in-memory table joins, on-disk and in-memory attributes, and
optimally structured queries.

Topics covered include a brief overview of the blockchain database structure and the
steps required to install and run a Bitcoin full node, which for this demonstration is
required to retrieve fully validated historical and real-time Bitcoin transaction
information from the network. Examples will be provided to demonstrate how a user
may begin to parse the blockchain with a few simple steps, converting retrieved data
to kdb+ format for on-disk storage, together with an overview of the performance
improvement techniques which can be applied to minimize memory requirements
and maximize data extraction speeds.

4

kx

Blockchain as a database

Blockchain is a database structure which consists of a collection of linked blocks,
where each block contains information such as financial transaction records. Blocks
are linked to one another cryptographically, by including the hash of the previous
block in the current block. By including the previous block hash in every newly created
block, a unique link is created to all past records, meaning previous transactions
cannot be altered without breaking the cryptographic link and being detected, an
important feature in maintaining data integrity.

This blockchain structure was proposed and utilized by Satoshi Nakamoto3 as the
ledger where all transactions occurring on the global Bitcoin network could be stored
and maintained. In a distributed network like Bitcoin, there is not a single global
ledger of all transactions, but instead each participant computer or ‘Full Node’ in the
network maintains their own running copy of all transactions and blocks which they
independently and continuously validate. Full nodes help the network by accepting
transactions and blocks from other full nodes, validating those transactions and blocks,
and then relaying them to other full nodes in the network. Such node technology is
run by individual users, exchanges, wallet providers and payment processors, and is
described further in the following section.

In conjunction with the blockchain database, Bitcoin includes a consensus mechanism
called Proof-Of-Work which enables network participants to reach agreement on the
state of the ledger (which transactions are valid, and which are not), by following a
protocol with consensus rules as opposed to having to trust a central party. Within
such a system, each participant in the network can come to agreement on the next
set of transactions to be included into a block, and added to the chain, however, there
is a severe computational cost associated with removing or altering existing blocks.
In practical terms, the resultant energy barrier associated with this computational
cost, makes the database highly immutable. This immutability is evident in Bitcoin
which has a perfect audit trail of the movement of all bitcoin tokens since it went live
back in 2009.

Full Node technology
Computers which participate in the Bitcoin network are called nodes, and those which
fully verify all the rules of the Bitcoin protocol are called full nodes. These nodes are
an integral software component of the Bitcoin network and along with validating all
transactions and blocks, also help relay them to other nodes.

3. https://bitcoin.org/bitcoin.pdf

5

kx

https://bitcoin.org/bitcoin.pdf

The full-node software is essential for users who wish to use Bitcoin in a
non-trust-based manner to maximize security, privacy and avail of the full Bitcoin
functionality. Therefore, this software is often run by individual Bitcoin users, miners,
cryptocurrency exchanges, wallet providers, payment processors and blockchain
analytics providers. Nodes help the network become more secure and better able to
relay transactions globally. Currently, the Bitcoin network is made up of about 10,000
reachable nodes4.

For the construction of the kdb+-based blockchain explorer described in this paper,
a full node will be required to provide both historical and real-time blocks which will
be used to create the underlying kdb+ database. In the next section, a brief overview
of current blockchain explorer technology will be provided together with examples
of the typical user queries run against them.

4. https://bitnodes.earn.com/nodes/live-map/

6

kx

https://bitnodes.earn.com/nodes/live-map/
https://bitnodes.earn.com/nodes/live-map/

Block explorers

The full-node software described above is open-source and free to download, making
it possible for anyone to submit transactions to the network independently and keep
a copy of all transaction history. However, running a Bitcoin full node comes with
certain hardware costs, see requirements5, so many users who do not wish to run their
own full node can instead use one of the many explorer services that provide
transaction, address and block lookup abilities online.

A block explorer is an application that typically runs alongside a full node, taking the
data provided by the node and converting it into a more human-readable format. It
is accessible in the form of webpages which use hyperlinks to allow users to easily
navigate between block data, transaction data and address information. Below are
examples of popular block explorers together with the underlying database upon
which they are built.

underlying databaseexplorer

SQLblockexplorer.com6

SQLblockchain.com7

MongoDBbitpay.com8

Users with access to these services typically use them to perform lookups by a Bitcoin
address, a transaction identifier or a block number they are interested in. Below is a
brief summary of what these addresses and identifiers look like and the typical results
returned from an explorer given these inputs.

Bitcoin addresses
A Bitcoin address is a string of 26-35 alphanumeric characters that allow for Bitcoin
payments. Users wishing to receive Bitcoin for payment can generate addresses
independently using one of the many free wallet applications available. A valid Bitcoin
address can be searched for using a block explorer to get a full history of all the
transactions associated with that address.

For example, the address 1andreas3batLhQa2FawWjeyjCqyBzypd is searched for in
the blockchain.com explorer9, showing the current balance and history of transactions.

5. https://bitcoin.org/en/full-node#secure-your-wallet
6. https://blockexplorer.com/
7. https://www.blockchain.com/en/explorer
8. https://insight.bitpay.com
9. https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd

7

kx

https://bitcoin.org/en/full-node#secure-your-wallet
https://blockexplorer.com/
https://www.blockchain.com/en/explorer
https://insight.bitpay.com
https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd
https://www.blockchain.com/btc/address/1andreas3batLhQa2FawWjeyjCqyBzypd

Addresses use a modified version of Base58 binary-to-text encoding called Base58Check
encoding10 rather than the standard Base64. This type of encoding was introduced in
Bitcoin and has since been applied to multiple cryptocurrencies and other applications.
For more information on the different address types and how they can be generated,
see Addresses11.

Transaction identifiers
A Bitcoin transaction is the transfer of value from one address to another, where a
single transaction can contain multiple inputs and outputs. For example, the following
tree chart12 illustrates this well, where a single input of 14.34 BTC is spent to over 50
output addresses.

A Bitcoin transaction identifier (TXID) is simply a number associated with a transaction
and is a 32-byte hexadecimal (Base16). The diagram below illustrates how Bitcoin
transactions work, where outputs from one transaction (the leftmost transaction) later
become inputs for the subsequent (rightmost) transaction. An output from a transaction
which has yet to be spent is referred to as an unspent transaction output (UTXO).

Block explorers are often used to perform lookups by TXID and this should return all
details of the transaction including, send address, receive address, amount sent and
the block number the transaction was included in. For example the first real-world
transaction13 made by two Hungarian software architects who bought two pizzas from
Papa John’s. It is formally known as the world’s most expensive pizza.

10. https://en.bitcoin.it/wiki/Base58Check_encoding

11. https://en.bitcoin.it/wiki/Address

12. https://www.blockchain.com/btc/tree/384914557

13. https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d

8

kx

https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Address
https://www.blockchain.com/btc/tree/384914557
https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d
https://www.blockchain.com/btc/tx/a1075db55d416d3ca199f55b6084e2115b9345e16c5cf302fc80e9d5fbf5d48d

Installing a Bitcoin full node

The most popular and trusted implementation of full nodes is called Bitcoin Core,
and its latest release can be found on Github14.

The software is very lightweight and is supported on Windows, macOS, and Linux.
Below are the install steps for a Linux machine running Ubuntu 18.04.

For more details on the installation process see instructions15.

1. Install the packages.

$ sudo apt-get install bitcoind

1. Create a bitcoin.conf file for a full node implementation.

Maintain a full transaction index, used to query the node historically.
txindex=1
[rpc]
Accept command line and JSON-RPC commands.
server=1
rpcuser=<username>
rpcpassword=<password>

Start up the Bitcoin Core daemon.

$ bitcoind -daemon

The bitcoind daemon is a headless daemon which syncs with other nodes on the
network on start-up and provides a JSON-RPC interface to enable easy integration
with other software or payment systems.

For first time installation, the node will go through the Initial Block Download (IBD)
process, which may take a considerable amount of time as it needs to download and
validate the entire blockchain which is roughly around 220GB.

14. https://github.com/bitcoin/bitcoin/releases

15. https://bitcoin.org/en/full-node#linux-instructions

9

kx

https://github.com/bitcoin/bitcoin/releases
https://bitcoin.org/en/full-node#linux-instructions

Interacting with a full node

When the bitcoind application is running, the Bitcoin Core Remote Procedure Call
(RPC) service listens for HTTP POST requests on port 8332 by default, and the service
binds to your server’s localhost network interface so it’s not accessible from other
servers unless otherwise specified by your node configuration16.

There are many options available to interface with a running node. The most common
command line tool is the bitcoin-cli, which is installed as part of Bitcoin Core, but
it is also possible to interface using any of the open-source client libraries, available
in most modern programming languages including C++, Python and Java. This
demonstration will make use of a native q library, qbitcoind17, detailed later below,
and in the Appendix.

Example interaction using bitcoin-cli:

The bitcoin-cli program can be used as a command line interface (CLI) to Bitcoin
Core. For example, to safely stop your node we can use the following command:

$ bitcoin-cli stop

Alternatively, it can be used for making JSON-RPC calls to the node for information:

1. Get the hash value of the first Genesis block

$ bitcoin-cli getblockhash 0
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

1. Using the block hash, return information about the block.

$ bitcoin-cli getblock \
"000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f" 1

16. https://www.multichain.com/qa/780/rpcallowip-to-give-access-to-clients?show=781#a781

17. https://kx.com/blog/securing-digital-assets-a-bitcoin-full-node-api-for-kdb/

10

kx

https://www.multichain.com/qa/780/rpcallowip-to-give-access-to-clients?show=781#a781
https://kx.com/blog/securing-digital-assets-a-bitcoin-full-node-api-for-kdb/

{
"hash": "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
"confirmations": 544077,
"strippedsize": 285,
"size": 285,
"weight": 1140,
"height": 0,
"version": 1,
"versionHex": "00000001",
"merkleroot": "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
"tx": [
"4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
],
"time": 1231006505,
"mediantime": 1231006505,
"nonce": 2083236893,
"bits": "1d00ffff",
"difficulty": 1,
"chainwork": "000100010001",
"nTx": 1,
"nextblockhash": "00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"

}

Using .j.k18 we can easily transform this JSON message output into a q dictionary.
However, using this method to interact with the node requires making system calls
to bitcoin-cli within a q session, and becomes very cumbersome when trying to
submit complex requests.

Instead, with the qbitcoind19 library, we can communicate directly with the node and
wallet software inside a q session by interfacing with the JSON-RPC server using
.Q.hp20 to generate valid HTTP POST requests. See the install instructions21.

The library comes with a wide range of supported functions22 which cover almost all
Bitcoin Core APIs, however, for this application, only two of the supported functions
will be required.

18. http://code.kx.com/q/ref/dotj/

19. https://github.com/jlucid/qbitcoind

20. http://code.kx.com/q/ref/dotq/#qhp-http-post

21. https://github.com/jlucid/qbitcoind/blob/master/README.md

22. https://github.com/jlucid/qbitcoind/wiki/Supported-Functions

11

kx

http://code.kx.com/q/ref/dotj/
https://github.com/jlucid/qbitcoind
http://code.kx.com/q/ref/dotq/#qhp-http-post
https://github.com/jlucid/qbitcoind/blob/master/README.md
https://github.com/jlucid/qbitcoind/wiki/Supported-Functions

Parsing the Bitcoin blockchain data

To extract block data from the locally-running node we can make use of the following
functions in the qbitcoind library.

.bitcoind.getblockhash23

This function is called first and takes as argument an integer value corresponding
to the block height, and returns the header hash of the block at that given height.
The block height is simply the number of blocks preceding a block on the chain.
For example, the genesis block has a height of zero since no blocks preceded it.

.bitcoind.getblock24

This function takes the block hash value returned from the previous call and
uses it to extract the block information. This data can be subsequently parsed
and stored in kdb+ tables.

Since the block height begins from a value of 0 and increases in increments of 1 for
each new block, we can repeatedly call the above functions starting from an index of
0 and working up to the latest block. Below is an example script showing how this
can be implemented using the above functions in combination.

Block extraction
To download blocks in an automated and recursive way, we can specify the block
retrieval logic within a .z.ts25 function which will get executed periodically by setting
the timer value \t.

By initializing the index value to zero and incrementing it each time .z.ts is called
we can download blocks in an iterative way, as shown below. Within the .z.ts
function, an if statement is present to check for a hash value of 0n, which indicates
the next block has not been mined yet. Once a null value is returned, this indicates
that the initial download process has completed, and the process is in sync with the
full node. Thereafter, new blocks will become available every ten minutes on average.

23. https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblockhash
24. https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblock
25. https://code.kx.com/q/ref/dotz/#zts-timer

12

kx

https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblockhash
https://github.com/jlucid/qbitcoind/wiki/Supported-Functions#getblock
https://code.kx.com/q/ref/dotz/#zts-timer

index:startHeight:0f
.z.ts:{[]
Hash:.bitcoind.getblockhash[index][`result];
if[not 0n~Hash;
-1(string .z.p)," Processing Block: ",string[index];
processBlock[Hash];
index+:1
];

}
processBlock:{[Hash]
Block:.bitcoind.getblock[Hash;(enlist `verbosity)!(enlist 2)];
}

In the example above, data from each block extracted from the node will be stored in
the local variable named Block. Since the object is a q dictionary, data within can be
easily manipulated and split to populate different table schemas which can be saved
to disk as the user specifies.

The above functionality is the basis for the qExplorer26 script which was used to extract
and store the Bitcoin blockchain data to a kdb+ on-disk database. In this script, the
processBlock function contains the subsequent logic to extract and insert the block
data to in-memory tables which are subsequently written to disk periodically. Once
a block height of 550,000 was reached, the process was shut down so that an analysis
could be applied to a static database with a fixed number of blocks.

26. https://github.com/jlucid/qExplorer/blob/master/app/qExplorer.q

13

kx

https://github.com/jlucid/qExplorer/blob/master/app/qExplorer.q

Storing the Bitcoin blockchain data

Tables and schemas
With the above download procedure in place, the next step to storing the blockchain
data is deciding how many tables and databases are required, with the appropriate
table schema and on-disk storage format to use for each.

It was decided to opt for two partitioned databases, named mainDB and refDB, which
would contain the tables listed below. All tables, except utxo, would be stored in
splayed27 format, meaning each column is saved as a separate file on disk. This would
allow for subsequent user queries against the kdb+ database to be optimized by only
loading required columns as needed.

mainDB is the primary database where all tables within are constructed from the
information returned by the .bitcoind.getblock function call. refDB is a secondary
database consisting of two reference tables, addressLookup and txidLookup, both of
which are used as index tables to track which block number an address or TXID can
be found in.

As will be shown later, these reference tables are used to optimize lookups by address
and TXID performed against mainDB by restricting the search space to a specific block
number and partition value. By knowing the partition number and height value,
lookups on the mainDB tables can be performed far more efficiently.

mainDB

contentnametype

meta information about a block such as the time it was mined, its size, the
network difficulty

blockssplayed

meta information about the transactions within a blocktxInfosplayed

all validated and spent Bitcoin transactionstxInputssplayed

all transaction outputs to be spent as inputs in a sequential blocktxOutputssplayed

keyed table used to store the list of unspent transactionsutxoflat file

refDB

contentnametype

address, height and partition informationaddressLookupsplayed

27. http://code.kx.com/q/cookbook/splayed-tables/

14

kx

http://code.kx.com/q/cookbook/splayed-tables/

contentnametype

TXID, height and partition informationtxidLookupsplayed

The schema definitions for each of these tables can be found on Github within the
tbls28 folder.

Partitioning
All splayed tables mentioned above were further partitioned by using a common
column to group data together. Such partitioned table29 structures help to more easily
manage large datasets and enable query optimization. For more information on the
benefits of partitioned databases, see whitepaper ‘Columnar Database and Query
Optimization30’ .

For mainDB, each table contains a common column named height corresponding to
the height of the block the data was extracted from. This height value is used to
determine which partition a given set of rows within each table should be stored in.

It was decided to partition the tables by integer values, such that each partition
contained an equal number of consecutive blocks for simplicity. A total block count
of 1000 was chosen arbitrarily for each partition, with the partition integer value being
derived from the row height using the following function

heightToPartition:{[Height;Width]
1i + `int$(Height div Width)
}

where the Width value in the formula above corresponds to 1000.

Using this formula, partition directory 1 would contain all tables whose rows contain
height column values ranging from 0 to 999, and partition 2 would contain all rows
with height values ranging from 1000 to 1999, and so on.

Since the Bitcoin blockchain imposes a limit on the size of each block of roughly 1MB,
this in turn results in each partition being roughly the same size after 2016 when
Bitcoin blocks are more consistently full. However, the size of partitions containing
data prior to then are much smaller. Having partitions of roughly equal size is an
advantage when it comes to multi-threaded queries, as it makes it easier to allocate
an equal amount of data to each slave for processing. Below is a sample of the txInfo
table, containing the partition column int.

28. https://github.com/jlucid/qExplorer/tree/master/tbls

29. https://code.kx.com/q4m3/14_Introduction_to_Kdb+/#143-partitioned-tables

30. http://code.kx.com/q/wp/columnar_database_and_query_optimization.pdf

15

kx

https://github.com/jlucid/qExplorer/tree/master/tbls
https://code.kx.com/q4m3/14_Introduction_to_Kdb+/#143-partitioned-tables
http://code.kx.com/q/wp/columnar_database_and_query_optimization.pdf
http://code.kx.com/q/wp/columnar_database_and_query_optimization.pdf

q)select int,height,size,weight,time,difficulty from blocks where int=30,height=29458
int height size weight time difficulty

30 29458 215 860 2009.12.12D05:21:27.000000000 1

For the refDB tables, a partitioning by int was again chosen, however, unlike the
previous block-height to partition-value mapping, an alternative mapping was chosen
to group all ‘similar’ addresses and TXIDs into the same partition.

As previously mentioned, all addresses consist of base58 characters, which are
randomly generated, and so we can group addresses which share a common set of
characters. For this implementation, addresses with the same last two characters
would be grouped to a common partition.

To determine the partition value for an address, we can construct a list of all possible
character pairs and use a reverse lookup by the last two characters of an address to
get its integer position in the list. The position can then be used to determine the
partition value as shown below.

q)characters:"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"
q)enumerations:`$characters cross characters
q)enumerations
`11`12`13`14`15`16`17`18`19`1A`1B`1C`1D`1E`1F`1G`1H`1J`1K`1L`1M`1N`1P`1Q`1R`1..
q)partitionValue:1+enumerations?`11
1

With this partitioning scheme, all addresses within a block can be grouped using the
last two characters and written to separate int partitions, together with the block
height number, forming the addressLookup partitioned table. The same approach
was used for partitioning the set of TXIDs, in which case we used the same
enumerations list as shown above since it contained all base16 characters.

With this approach, a search against the addressLookup table in refDB for the block
information associated with the address 1HFgq6vnpwJxvaDsz8HGA2TgjYYU8Hty11
would only need to be performed against the integer partition with value 1. This greatly
reduces the search space required to determine the block height number, which is
crucial to extracting the transaction details from mainDB.

Below are samples of the addressLookup and txidLookup tables generated. Notice
that both tables contain height and partition columns where the values correspond
to where the data can be found in the mainDB tables, primarily txInputs and txOutputs.
Therefore, whenever a query by address or TXID is requested, the partition value and
height will first be retrieved from the respective table.

16

kx

q)select from addressLookup where int=1
int address height partition tag
--
1 "1MycUHutP9zPJsCqhVAWDmj4rbhKvtYE11" 409 1 E11
1 "1Mfio8WrkbbfWTGLPzzr4b8oy6G75sCC11" 1627 2 C11
1 "1GULhpWAhSCmSjfd7LJGNkZhC2KbVQUW11" 3920 4 W11
1 "1mKhgDQNc4jJsWNegtEGTEm2NV4PToK11" 4918 5 K11
1 "1mKhgDQNc4jJsWNegtEGTEm2NV4PToK11" 5807 6 K11
1 "15ZaNMpm3MVVNnN7YjtAQUfBPnD9N3JP11" 6258 7 P11
1 "1JZgXw8QbDkKyKyg78TRGQFFz3dzNeEn11" 11982 12 n11
1 "1PFmtiKvdzqBdcEhQWMeC2orGtWoqBJC11" 12407 13 C11
1 "149U3rMJif1e2b3KE7geYnrJUoRySKDM11" 17209 18 M11
1 "149U3rMJif1e2b3KE7geYnrJUoRySKDM11" 18059 19 M11

q)select int,-25#'txid,height,partition,tag from txidLookup where int=34
int txid height partition tag

34 "c0ed52575c43f03c6f20d511a" 477 1 11a
34 "9b5528ee1b1dedacfa4f2cd1a" 1333 2 d1a
34 "940c4b116add23374d887151a" 1676 2 51a
34 "7d527a1949d25a7913a7bcd1a" 2220 3 d1a
34 "d8f5eef72af0193df19d7261a" 2229 3 61a
34 "31e42ef0e91ede7062c97aa1a" 2342 3 a1a
34 "cb2f7a82e70f4a00fca32b81a" 2357 3 81a
34 "3f9f168ff36706c964dbab31a" 2431 3 31a
34 "904a640cf38f0b78baa5cc11a" 2567 3 11a
34 "a4b0a9dbe7bc8dca10abbc01a" 2662 3 01a

Showing only the last 25 characters of the txid column values for display purposes.

Attributes on-disk
Since all tables in the mainDB are saved to disk with a common height column, whose
value is naturally sorted in ascending order within each partition of 1000 blocks, it
allows for a straight-forward application of a partitioned attribute to the column
on-disk to optimize all lookups by block height.

This attribute is ideal for optimizing on-disk queries where the column in question is
often queried and filtering by which (in the where clause) greatly minimizes the
amount of data needed to search. This is the case here, since any queries for transaction
information executed against the mainDB tables, will restrict the search to specific
blocks by placing a height restraint leftmost in the where clause, as shown in section
‘Reference HDB with lookup tables’ .

Similarly, within refDB, both the addressLookup and txidLookup tables have a grouped
attribute applied to a symbol column called tag, shown above. This column contains
the last three characters of the address or TXID string, but is stored as a symbol. This
grouped attribute is used to minimize the number of string comparisons performed
when searching for an address or TXID within a given partition.

17

kx

For more information on the performance enhancements achieved by on-disk attribute
application, refer again to the whitepaper Columnar Database and Query
Optimisation32.

Memory management
An important consideration for the blockchain download process was that it be flexible
enough to run on mid-range systems without consuming too much memory. With
new blocks being extracted and processed every 100ms during the initial download
period, a lot of computation is performed in-memory, and the following steps were
taken to minimize the memory footprint:

Periodic write (append) to disk

The download script can be configured to append in-memory tables to disk and clear
in-memory tables on a specified period. This helps restrain the amount of data required
to be held in memory. For the download script, a write-down frequency of 100 blocks
was chosen. This option is suitable for the initial download of historic blocks, however,
once the process is in sync and has received the latest block, an append frequency of
1 would be more appropriate as new blocks are likely to be received every 10 minutes
thereafter. Below is an example of how the processBlock function, shown earlier,
can be modified to write to disk every 100 blocks and clear in-memory tables.

mainDB:`:/home/path/to/mainDB/
writeFreq:100
width:1000
tblList:`txInfo`blocks`txInputs`txOutputs

processBlock:{[Hash]
Block:.bitcoind.getblock[Hash;(enlist`verbosity)!(enlist 2)];
///////////////////
// Save Block data to internal tables txInfo,
// blocks, txInputs and txOutputs
///////////////////
if[writeFreq~1f+(index mod writeFreq);
saveSplayed[mainDB;heightToPartition[index;width];]each tblList;
clearTables each tblList
];

}

32. https://kx.com/media/2017/11/Columnar_database_and_query_optimization.pdf

18

kx

https://kx.com/media/2017/11/Columnar_database_and_query_optimization.pdf
https://kx.com/media/2017/11/Columnar_database_and_query_optimization.pdf

saveSplayed:{[Location;Partition;TableName]
Path:hsym `$"/"sv (string[Location];string[Partition];string[TableName],"/");
.[Path;(); $[()~key Path;:;,] ;`.[TableName]]
}

clearTable:{[TableName]
@[`.;TableName;0#]
}

heightToPartition:{[Height;Width]
1i + `int$(Height div Width)
}

For more information on similar intraday write-down solutions, see the whitepaper
Intraday Writedown Solutions33.

Garbage collection

As part of the download process, the .Q.gc34 function is called periodically to return
unreferenced memory to the heap.

Serialize complex columns

Even after executing .Q.gc at the end of each table write-down event, it was noticed
that there still persisted a build-up of heap memory over time. This was caused by the
complex columns scriptSig and scriptPubKey which were nested tables, causing
the memory to become fragmented and difficult to release back to the OS35. A simple
workaround for this was to serialize the values using -8!36 before inserting into the
tables.

Compression

To minimize on-disk memory, all tables are stored across partitioned databases in a
compressed format. This was achieved by setting .z.zd37 to a value of 17 2 6 prior
to writing.

q).z.zd:17 2 6

33. http://code.kx.com/q/wp/intraday_writedown_solutions.pdf

34. http://code.kx.com/q/ref/dotq/#qgc-garbage-collect

35. http://code.kx.com/q/ref/dotq/#qgc-garbage-collect

36. http://code.kx.com/q/ref/internal/

37. http://code.kx.com/q/ref/dotz/#zzd-zip-defaults

19

kx

http://code.kx.com/q/wp/intraday_writedown_solutions.pdf
http://code.kx.com/q/ref/dotq/#qgc-garbage-collect
http://code.kx.com/q/ref/dotq/#qgc-garbage-collect
http://code.kx.com/q/ref/internal/
http://code.kx.com/q/ref/dotz/#zzd-zip-defaults

The above setting resulted in a compression ratio of 2.7 on average. For more
information on compression settings and performance, see whitepaper Compression
in kdb+38

Assigning appropriate data types

When using the RPC calls, often data can be returned with an inappropriate data type.
For example, the below height value is returned as a float type, when a long would
be more appropriate. By performing a simple type cast, substantial memory savings
can be made.

q)Block:.bitcoind.getblock[Hash;(enlist `verbosity)!(enlist 2)]
q)Block[`result][`height]
435675f
// Before a casting to long
q)“j”Block[`result][`height]
435675

Maintaining a UTXO table
As part of the blockchain download process, the txInputs table is populated with the
input information for each transaction, namely, the Bitcoin being spent. The table
schema is given as follows.

txInputs:([]
height:`long$();
txid:();
prevtxid:();
n:`int$();
inputValue:`float$();
addresses:();
scriptSig:();
sequence:`float$();
txinwitness:()

);

The columns prevtxid and n are returned directly from the .bitcoind.getblock
function call and correspond to the transaction’s ID (prevtxid) and output index (n)
value, which uniquely define the transaction input (i.e. the Bitcoin being spent).

However, to give the user a more complete and comprehensive history of a transaction
and to enable more efficient lookup performance later, we would prefer that the
txInputs table also contain the sending address information (addresses) and input
BTC amount (inputValue) information also.

38. http://code.kx.com/q/wp/compression_in_kdb.pdf

20

kx

http://code.kx.com/q/wp/compression_in_kdb.pdf
http://code.kx.com/q/wp/compression_in_kdb.pdf

To retrieve the address and amount information, it would be possible to perform a
lookup on the transaction outputs table, txOutputs, over all previous blocks using
the transaction ID and output index information. However, this would be very slow
to perform for each transaction during the download process.

Instead, to achieve better performance, an internal table called utxo was used to
maintain a running list of all unspent transaction outputs, containing the address and
value amount. The table was keyed on a string column, called txuid, which is the
concatenation of txid and n from the txOutputs table. The combination of these two
values is used to create a unique identifier for each UTXO. To this unique key a
unique39 attribute (`u#) was applied, which greatly accelerates the subsequent left
join with the txInputs table. Below is summarized the join procedure followed.

q)select prevxid,n from txInputs
prevtxid n
--
"4295cd1f56c7f5b5f44f6a2bf09896f623b777344796de381de1142a0686ab75" 0
"4295cd1f56c7f5b5f44f6a2bf09896f623b777344796de381de1142a0686ab75" 1
q)utxo
txuid	inputValue address
"42...42a0686ab750"| 0.00396241 "1MsdXWEwZouK164oM6vUWVFueYADpq2DZm"
"42...42a0686ab751"| 0.018173 "18DWzYt795x3UfbzFXs2qwqmshXpidx6g2"

q)txInputs:update txuid:(prevtxid,'string[n]) from txInputs
q)txInputs:txInputs lj utxo
n txuid inputValue address

0 "42..42a0686ab750" 0.00396241 "1MsdXWEwZouK164oM6vUWVFueYADpq2DZm"
1 "42..42a0686ab751" 0.018173 "18DWzYt795x3UfbzFXs2qwqmshXpidx6g2"

To keep the in-memory footprint of the UTXO table to a minimum, records were
removed whenever an output was spent. As a result, during the download process,
the number of rows in this table is exactly the number of UTXOs available. Below is
a plot of the table count versus block height, showing the gradual increase in UTXOs
over time.

39. http://code.kx.com/q/ref/elements/#attributes

21

kx

http://code.kx.com/q/ref/elements/#attributes

Reference HDB with lookup tables
As described previously, the purpose of the refDB tables addressLookup and
txidLookup is to keep track of the partition number and block height values the
transaction information associated with an address or TXID can be found in the mainDB
tables. Doing a brute-force exhaustive search on the txInputsor txOutputs tables for
a single address, without being able to restrict the search space using the partition
number or block height value, would result in an enormous number of string
comparisons and very slow lookup times. Instead, a sample query to discover the
height and partition values for a given address can be performed as follows.

First, the last two characters of the address are used to compute the partition number
in refDB, and the last three characters are used to derive the tag column value which
is used to minimize the number of string comparisons and accelerate the lookup.

q)Addr:"1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E"
q)Tag:`$-3#Addr
q)Part:1+enumerations?(`$-2#Addr)
q)select from addressLookup where int=Part, tag=Tag, address like Addr
int address height partition tag

246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 272900 273 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 272906 273 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275274 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275316 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275574 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275576 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275656 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 275660 276 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 277999 278 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 278000 279 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 278011 279 n5E
246 "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E" 278013 279 n5E

22

kx

With the above height and partition value information, subsequent lookups on the
txInputs and txOutputs tables in mainDB are greatly simplified and fast.

q)Addr:"1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E"
q)first select from txOutputs where int=273,height=272900,address like Addr
int | 273
height | 272900
txid | "1a3febb07e3fd5bc8f7b4169f282c8c5726f92d604ec4547aa6e400f4df20018"
outputValue | 5.05
address | "1koSYoTVcBLV1dHMLgR94CvAqtvvx6n5E"
n | 0i
q)\t first select from txOutputs where int=273,height=272900,address like Addr
10

On Github, the script explorer.q40 contains some convenience functions to perform
single and multiple addresses or TXID lookups. Below is shown the result of some
sample inputs.

q)addr:("";"";"")
q)addr[0]:"1GTaPBQgdQ4edcLR5Tj8m6gVq4umx5i915"
q)addr[1]:"1K9QfXnjhqSix7NuzuP2Kmtdg2RzjBi15"
q)addr[2]:"1MB1W3n5gDAMnRN4f6pXjzgMygzSv9qj15"
q)update -15#'txid from .qexplorer.addressLookup[addr]
int height txid address inputValue outputValue
--
71 70527 "51de0bcbea7f26f" "1GTaPBQgdQ4edcLR5Tj8m6gVq4umx5i915" 50
155 154085 "b9220cd49836a0b" "1K9QfXnjhqSix7NuzuP2Kmtdg2RzjBi15" 50
42 41875 "51cd4d47b41b5cf" "1MB1W3n5gDAMnRN4f6pXjzgMygzSv9qj15" 50
40 39751 "97095783f947345" "1GTaPBQgdQ4edcLR5Tj8m6gVq4umx5i915" 50
7 6606 "4014bb15780da78" "1K9QfXnjhqSix7NuzuP2Kmtdg2RzjBi15" 50
42 41369 "6b1b8bdf5bb861d" "1MB1W3n5gDAMnRN4f6pXjzgMygzSv9qj15" 50

q)tx:("";"")
q)tx[0]:"1e743aa7b160cab8e293b902079031a989b7600dd59e00af8856e001d83b63c9"
q)tx[1]:"3aec5c0fe2b03b3fe596e71800d4868751d75ff2ca61e1db34608e2ac7daf8ed"
q)update -15#'txid,-10#'address from .qexplorer.txidLookup[tx]
int height txid size weight address inputValue outputValue
--
346 345609 "4608e2ac7daf8ed" 814 3256 "JE2FM8t7GA" 1.458481
346 345609 "4608e2ac7daf8ed" "HruQXK2D2S" 1.458381
346 345609 "4608e2ac7daf8ed" "1tytfU7kQn" 1.458381
346 345609 "856e001d83b63c9" 635 2540 "G7J3mjzfZD" 100.2173
346 345609 "856e001d83b63c9" "EGrZghdGrq" 100.2173

40. https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q

23

kx

https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q

Exploring the Bitcoin blockchain

As mentioned previously, blockchain explorers can also be used to gauge the state of
the network by computing different metrics. Below are some useful metrics which
can be readily performed against the kdb+ database using the functions defined in
the explorer.q41 file.

SegWit address adoption
SegWit (segregated witness) addresses were introduced in block 481824 (2017-08-24)
as a way to reduce the size needed to store transactions in a block and provide
protection from transaction malleability42. One way to track the adoption of this new
address format is to examine all the unique addresses in a block and count how many
are of bech3243 address format. The function .qexplorer.segwitAddr, shown below,
can be used to perform this calculation on a single block and returns the number of
address per format type. By using the each adverb, the function can be run over a
range of blocks beginning from height 481824 (partition 481) to the latest block, to
measure the adoption increase over time.

Below is a graph showing the number of addresses by format over a range of blocks.

41. https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q

42. https://en.bitcoin.it/wiki/Transaction_malleability

43. https://en.bitcoin.it/wiki/Bech32_adoption

24

kx

https://github.com/jlucid/qExplorer/blob/master/lib/explorer.q
https://en.bitcoin.it/wiki/Transaction_malleability
https://en.bitcoin.it/wiki/Bech32_adoption

Mining revenue
Mining revenue is the reward given to a miner for creating a new block and consists
of the coinbase output (Block reward) plus any transaction fees. Currently, the reward
alone is set to 12.5 BTC, but this amount gets divided by 2 every 4 years. This is
commonly known as the Bitcoin halvening, and this reduction in new supply over
time follows a predetermined and predictable schedule. The next halvening is due to
occur in 2020 where the reward will be reduced to 6.25 BTC. The below chart shows
the total mining revenue in BTC over time and can be computed by running the
.qexplorer.minerReward function over all block heights.

Total number of transactions per block
A simple query which can be extracted from the database is the total number of
transactions per block. This metric can be used to gauge the level of demand for Bitcoin
transactions and block space over time. Below is the results of running the
.qexplorer.totalTx function over all blocks and shows the gradual increase in Bitcoin
transactions over time.

25

kx

26

kx

Conclusion

This paper described how a q process can be built to interact with a Bitcoin full node
to extract and store blockchain transaction data in kdb+ format. By making use of
appropriate schemas, partitioned database structures and query performance
techniques it was possible to create a simple blockchain explorer process to look up
transaction information and perform some interesting blockchain analytics. This
application of kdb+ to the area of blockchain explorer technology is a further step
toward better understanding blockchain data, the unique challenges associated with
data retrieval and storage, and potential for application development using the
technology within the domain.

27

kx

Appendix

Qbitcoind is is a q library found on Github44 which can be used to interact with the
Bitcoin core full node and wallet implementation. The library allows a user to make
requests to the locally running node via JSON-RPC HTTP requests within a q session.
Below are a few examples of the functionality available.

.bitcoind.getnewaddress45

Instruct the wallet software to generate a new Bitcoin receive address

.bitcoind.getbalance46

Request the current balance associate with an address from the node

.bitcoind.sendtoaddress47

Create a Bitcoin transaction for the node to propagate to the network

.bitcoind.addmultisigaddress48

Create a multi-signature address for more secure storage

.bitcoind.getrawtransaction49

Get information associated with a transaction (TXID)

.bitcoind.getblock50

Extract information from the blockchain

44. https://github.com/jlucid/qbitcoind
45. https://github.com/jlucid/qbitcoind/wiki/Create-a-receive-address
46. https://github.com/jlucid/qbitcoind/wiki/Address-Balances
47. https://github.com/jlucid/qbitcoind/wiki/Sending-from-a-Hot-Wallet
48. https://github.com/jlucid/qbitcoind/wiki/Multi-Signature-Wallet
49. https://github.com/jlucid/qbitcoind/wiki/Transaction-IDs
50. https://github.com/jlucid/qbitcoind/wiki/Extracting-Blockchain-Info

28

kx

https://github.com/jlucid/qbitcoind
https://github.com/jlucid/qbitcoind/wiki/Create-a-receive-address
https://github.com/jlucid/qbitcoind/wiki/Address-Balances
https://github.com/jlucid/qbitcoind/wiki/Sending-from-a-Hot-Wallet
https://github.com/jlucid/qbitcoind/wiki/Multi-Signature-Wallet
https://github.com/jlucid/qbitcoind/wiki/Transaction-IDs
https://github.com/jlucid/qbitcoind/wiki/Extracting-Blockchain-Info

	Blockchain as a database
	Block explorers
	Installing a Bitcoin full node
	Interacting with a full node
	Parsing the Bitcoin blockchain data
	Storing the Bitcoin blockchain data
	Exploring the Bitcoin blockchain
	Conclusion
	Appendix

