
  
    
    
      
    
    
    
    
    
      
        
        
          Skip to content
        
      
    

    
      
    

    
    
      


  
    
      
  [image: logo]

    
    
      
    
    
      
        
          
            Kdb+ and q documentation
          
        

        
          
            
              Temporal data: a kdb+ framework for corporate actions | White Papers | documentation for q and kdb+
            
          
        

      

    

    
      
        
          
          
          
          
            
              
            
          
        
          
          
          
          
            
              
            
          
        
      

    
    
    
      
        
      
      
  
  
    
      
      
        
        
      
      
        
        
          
        
      
      
    

    
      
        
          
            Initializing search
          

          

        

      

    

  



    
    
  
  



   Ask a question

      
      
        
          
            

  
    	
    
      Home
    
  
	
      
        kdb+ and q
      
    
	
    
      kdb Insights
    
  
	
    
      kdb Insights Enterprise
    
  
	
    
      KDB.AI
    
  
	
    
      PyKX
    
  
	
    
      APIs
    
  
	
      
        Learn
      
    
	
      
        Language
      
    
	
      
        Database
      
    
	
      
        Developing
      
    
	
      
        Architecture
      
    
	
    
      Help
    
  


  


          
        
      
      
        
          
            
              
              
                
                  
                    

  



  
    
      
  [image: logo]

    
    Kdb+ and q documentation
  
  
  	
      
        Home
      
    
	
      
      
      
      
      
      
      
      
        
          kdb+ and q
          
        
      
      
        
          
          kdb+ and q
        
        	
      
        About
      
    
	
      
        Reference card
      
    
	
      
        Developer tools
      
    
	
      
      
      
      
      
      
      
      
        
          Interfaces
          
        
      
      
        
          
          Interfaces
        
        	
      
        KX libraries
      
    
	
      
        Bloomberg
      
    
	
      
      
      
      
      
      
      
      
        
          C/C++
          
        
      
      
        
          
          C/C++
        
        	
      
        Quick guide
      
    
	
      
        API reference
      
    
	
      
        C API for kdb+ (WP)
      
    
	
      
        Using C/C++ functions
      
    


      
    
	
      
        Excel
      
    
	
      
        FIX messaging (WP)
      
    
	
      
        GPUs
      
    
	
      
        Lightning tickerplants (WP)
      
    
	
      
        Matlab
      
    
	
      
        ODBC
      
    
	
      
        ODBC3
      
    
	
      
        R
      
    
	
      
        Scala
      
    


      
    
	
      
        Open source
      
    
	
      
        Machine learning
      
    
	
      
      
      
      
      
      
      
      
        
          Using kdb+ in the cloud
          
        
      
      
        
          
          Using kdb+ in the cloud
        
        	
      
        About
      
    
	
      
      
      
      
      
      
      
      
        
          Amazon Web Services
          
        
      
      
        
          
          Amazon Web Services
        
        	
      
        Reference architecture
      
    
	
      
      
      
      
      
      
      
      
        
          Amazon EC2 & Storage Services
          
        
      
      
        
          
          Amazon EC2 & Storage Services
        
        	
      
        Migrating a kdb+ HDB to Amazon EC2
      
    
	
      
        Elastic Block Store (EBS)
      
    
	
      
        EFS (NFS)
      
    
	
      
        Amazon Storage Gateway
      
    
	
      
        FSx for Lustre
      
    


      
    
	
      
        AWS Lambda
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Microsoft Azure
          
        
      
      
        
          
          Microsoft Azure
        
        	
      
        Reference architecture
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Google Cloud
          
        
      
      
        
          
          Google Cloud
        
        	
      
        Reference architecture
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Auto Scaling (WP)
          
        
      
      
        
          
          Auto Scaling (WP)
        
        	
      
        About
      
    
	
      
        Amazon Web Services
      
    
	
      
        Realtime data cluster
      
    
	
      
        Costs and risks
      
    


      
    
	
      
        Surveillance in the Cloud (WP)
      
    
	
      
      
      
      
      
      
      
      
        
          Other file systems
          
        
      
      
        
          
          Other file systems
        
        	
      
        MapR-FS
      
    
	
      
        Goofys
      
    
	
      
        S3FS
      
    
	
      
        S3QL
      
    
	
      
        ObjectiveFS
      
    
	
      
        WekaIO Matrix
      
    
	
      
        Quobyte
      
    


      
    
	
      
        DigitalOcean
      
    


      
    
	
      
        Community
      
    
	
      
        kdb+ and q forum
      
    
	
      
        White papers
      
    
	
      
        About this site
      
    


      
    
	
      
        kdb Insights
      
    
	
      
        kdb Insights Enterprise
      
    
	
      
        KDB.AI
      
    
	
      
        PyKX
      
    
	
      
        APIs
      
    
	
      
      
      
      
      
      
      
      
        
          Learn
          
        
      
      
        
          
          Learn
        
        	
      
        Get started
      
    
	
      
        Install
      
    
	
      
        Licenses
      
    
	
      
      
      
      
      
      
      
      
        
          Mountain tour
          
        
      
      
        
          
          Mountain tour
        
        	
      
        Overview
      
    
	
      
        Begin here
      
    
	
      
        The q session
      
    
	
      
        Tables
      
    
	
      
        CSVs
      
    
	
      
        Datatypes
      
    
	
      
        Scripts
      
    
	
      
        IDE
      
    


      
    
	
      
        Q for quants
      
    
	
      
        Q by Examples
      
    
	
      
        Q for All
      
    
	
      
      
      
      
      
      
      
      
        
          Examples from Python
          
        
      
      
        
          
          Examples from Python
        
        	
      
        Basic
      
    
	
      
        Array
      
    
	
      
        List
      
    
	
      
        Strings
      
    
	
      
        Dictionaries
      
    


      
    
	
      
        Q for Mortals 3
      
    
	
      
      
      
      
      
      
      
      
        
          Q by Puzzles
          
        
      
      
        
          
          Q by Puzzles
        
        	
      
        About
      
    
	
      
        12 Days of Xmas
      
    
	
      
        ABC problem
      
    
	
      
        Abundant odds
      
    
	
      
        Four is magic
      
    
	
      
        Name Game
      
    
	
      
        Summarize and Say
      
    
	
      
        Word wheel
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Reading room
          
        
      
      
        
          
          Reading room
        
        	
      
        Information desk
      
    
	
      
        Boggle
      
    
	
      
        Cats cradle
      
    
	
      
        Fizz buzz
      
    
	
      
        Klondike
      
    
	
      
        Phrasebook
      
    
	
      
        Scrabble
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Application examples
          
        
      
      
        
          
          Application examples
        
        	
      
        Astronomy (WP)
      
    
	
      
        Bitcoin blockchains (WP)
      
    
	
      
        Card counters (WP)
      
    
	
      
      
      
      
        
      
      
        
          Corporate actions (WP)
          
        
      
      
        Corporate actions (WP)
      
      
        

  


  
  
  
    
  
  
    
      
      On this page
    
    	
  
    Corporate actions
  
  
    
      	
  
    Name change
  
  

	
  
    Stock split
  
  

	
  
    Cash dividend
  
  

	
  
    Spin-off
  
  



    
  

	
  
    Temporal data
  
  
    
      	
  
    Non-sorted dictionary
  
  

	
  
    Sorted dictionary
  
  

	
  
    Non-sorted keyed table
  
  

	
  
    Sorted keyed table
  
  



    
  

	
  
    Corporate action name change
  
  
    
      	
  
    Requirements
  
  

	
  
    Reference data
  
  

	
  
    Corporate-action table
  
  

	
  
    Research In Motion
  
  

	
  
    Daily correction table
  
  



    
  

	
  
    The data
  
  
    
      	
  
    Corporate-action adjustment
  
  

	
  
    Get results
  
  



    
  

	
  
    Stock split
  
  

	
  
    Cash dividend
  
  

	
  
    Combining adjustments
  
  

	
  
    Conclusion
  
  

	
  
    Author
  
  



  

      
    
	
      
        Disaster management (WP)
      
    
	
      
        Exoplanets (WP)
      
    
	
      
        Market depth (WP)
      
    
	
      
        Market fragmentation (WP)
      
    
	
      
        Option pricing (WP)
      
    
	
      
        Predicting floods (WP)
      
    
	
      
        Signal processing (WP)
      
    
	
      
        Space weather (WP)
      
    
	
      
        Trading surveillance (WP)
      
    
	
      
        Transaction-cost analysis (WP)
      
    
	
      
        Trend indicators (WP)
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Advanced q
          
        
      
      
        
          
          Advanced q
        
        	
      
        Remarks on Style
      
    
	
      
        Shifts & scans
      
    
	
      
        Technical articles
      
    
	
      
        Views
      
    
	
      
        Origins
      
    
	
      
        Terminology
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Starting kdb+
          
        
      
      
        
          
          Starting kdb+
        
        	
      
        Overview
      
    
	
      
        The q language
      
    
	
      
        IPC
      
    
	
      
        Tables
      
    
	
      
        Historical database
      
    
	
      
        Realtime database
      
    


      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Language
          
        
      
      
        
          
          Language
        
        	
      
        Reference card
      
    
	
      
        By topic
      
    
	
      
      
      
      
      
      
      
      
        
          Iteration
          
        
      
      
        
          
          Iteration
        
        	
      
        Overview
      
    
	
      
        Implicit iteration
      
    
	
      
        Iterators
      
    
	
      
        Maps
      
    
	
      
        Accumulators
      
    
	
      
        Guide to iterators (WP)
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Keywords
          
        
      
      
        
          
          Keywords
        
        	
      
        abs
      
    
	
      
        aj, aj0, ajf, ajf0
      
    
	
      
        all, any
      
    
	
      
        and
      
    
	
      
        asc, iasc, xasc
      
    
	
      
        asof
      
    
	
      
        attr
      
    
	
      
        avg, avgs, mavg, wavg
      
    
	
      
        bin, binr
      
    
	
      
        ceiling
      
    
	
      
        count, mcount
      
    
	
      
        cols, xcol, xcols
      
    
	
      
        cor
      
    
	
      
        cos, acos
      
    
	
      
        cov, scov
      
    
	
      
        cross
      
    
	
      
        csv
      
    
	
      
        cut
      
    
	
      
        delete
      
    
	
      
        deltas
      
    
	
      
        desc, idesc, xdesc
      
    
	
      
        dev, mdev, sdev
      
    
	
      
        differ
      
    
	
      
        distinct
      
    
	
      
        div
      
    
	
      
        dsave
      
    
	
      
        each, peach
      
    
	
      
        ej
      
    
	
      
        ema
      
    
	
      
        enlist
      
    
	
      
        eval, reval
      
    
	
      
        except
      
    
	
      
        exec
      
    
	
      
        exit
      
    
	
      
        exp, xexp
      
    
	
      
        fby
      
    
	
      
        fills
      
    
	
      
        first, last
      
    
	
      
        fkeys
      
    
	
      
        flip
      
    
	
      
        floor
      
    
	
      
        get, set
      
    
	
      
        getenv, setenv
      
    
	
      
        group
      
    
	
      
        gtime, ltime
      
    
	
      
        hcount
      
    
	
      
        hdel
      
    
	
      
        hopen, hclose
      
    
	
      
        hsym
      
    
	
      
        ij, ijf
      
    
	
      
        in
      
    
	
      
        insert
      
    
	
      
        inter
      
    
	
      
        inv
      
    
	
      
        key
      
    
	
      
        keys, xkey
      
    
	
      
        like
      
    
	
      
        lj, ljf
      
    
	
      
        load, rload
      
    
	
      
        log, xlog
      
    
	
      
        lower
      
    
	
      
        lsq
      
    
	
      
        max, maxs, mmax
      
    
	
      
        md5
      
    
	
      
        med
      
    
	
      
        meta
      
    
	
      
        min, mins, mmin
      
    
	
      
        mmu
      
    
	
      
        mod
      
    
	
      
        neg
      
    
	
      
        next, prev, xprev
      
    
	
      
        not
      
    
	
      
        null
      
    
	
      
        or
      
    
	
      
        over, scan
      
    
	
      
        parse
      
    
	
      
        pj
      
    
	
      
        prd, prds
      
    
	
      
        prior
      
    
	
      
        rand
      
    
	
      
        rank
      
    
	
      
        ratios
      
    
	
      
        raze
      
    
	
      
        read0
      
    
	
      
        read1
      
    
	
      
        reciprocal
      
    
	
      
        reverse
      
    
	
      
        rotate
      
    
	
      
        save, rsave
      
    
	
      
        select
      
    
	
      
        show
      
    
	
      
        signum
      
    
	
      
        sin, asin
      
    
	
      
        sqrt
      
    
	
      
        ss, ssr
      
    
	
      
        string
      
    
	
      
        sublist
      
    
	
      
        sum, sums, msum, wsum
      
    
	
      
        sv
      
    
	
      
        system
      
    
	
      
        tables
      
    
	
      
        tan, atan
      
    
	
      
        til
      
    
	
      
        trim, ltrim, rtrim
      
    
	
      
        type
      
    
	
      
        uj, ujf
      
    
	
      
        union
      
    
	
      
        ungroup
      
    
	
      
        update
      
    
	
      
        upsert
      
    
	
      
        value
      
    
	
      
        var, svar
      
    
	
      
        view, views
      
    
	
      
        vs
      
    
	
      
        where
      
    
	
      
        within
      
    
	
      
        wj, wj1
      
    
	
      
        xbar
      
    
	
      
        xgroup
      
    
	
      
        xrank
      
    


      
    
	
      
        Overloaded glyphs
      
    
	
      
      
      
      
      
      
      
      
        
          Operators
          
        
      
      
        
          
          Operators
        
        	
      
        Add
      
    
	
      
        Amend
      
    
	
      
        Apply, Index, Trap
      
    
	
      
        Assign
      
    
	
      
        Cast
      
    
	
      
        Coalesce
      
    
	
      
        Compose
      
    
	
      
        Cut
      
    
	
      
        Deal, Roll, Permute
      
    
	
      
        Delete
      
    
	
      
        Display
      
    
	
      
        Dict
      
    
	
      
        Divide
      
    
	
      
        Dynamic Load
      
    
	
      
        Drop
      
    
	
      
        Enkey, Unkey
      
    
	
      
        Enumerate
      
    
	
      
        Enumeration
      
    
	
      
        Enum Extend
      
    
	
      
        Equal
      
    
	
      
        Exec
      
    
	
      
        File Binary
      
    
	
      
        File Text
      
    
	
      
        Fill
      
    
	
      
        Find
      
    
	
      
        Flip Splayed
      
    
	
      
        Greater
      
    
	
      
        Greater Than
      
    
	
      
        Identity, Null
      
    
	
      
        Join
      
    
	
      
        Less Than
      
    
	
      
        Lesser
      
    
	
      
        Match
      
    
	
      
        Matrix Multiply
      
    
	
      
        Multiply
      
    
	
      
        Not Equal
      
    
	
      
        Pad
      
    
	
      
        Select
      
    
	
      
        Set Attribute
      
    
	
      
        Simple Exec
      
    
	
      
        Signal
      
    
	
      
        Subtract
      
    
	
      
        Take
      
    
	
      
        Tok
      
    
	
      
        Update
      
    
	
      
        Vector Conditional
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Control constructs
          
        
      
      
        
          
          Control constructs
        
        	
      
        Cond
      
    
	
      
        do
      
    
	
      
        if
      
    
	
      
        while
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Namespaces
          
        
      
      
        
          
          Namespaces
        
        	
      
        .h
      
    
	
      
        .j
      
    
	
      
        .m
      
    
	
      
        .Q
      
    
	
      
        .z
      
    


      
    
	
      
        Application
      
    
	
      
        Atomic functions
      
    
	
      
        Comparison
      
    
	
      
        Conformability
      
    
	
      
        Connection handles
      
    
	
      
        Datatypes
      
    
	
      
        Dictionaries
      
    
	
      
        Enumerations
      
    
	
      
        Evaluation control
      
    
	
      
        Exposed infrastructure
      
    
	
      
        File system
      
    
	
      
        Function notation
      
    
	
      
        Functional qSQL
      
    
	
      
        Glossary
      
    
	
      
        Internal functions
      
    
	
      
        Joins
      
    
	
      
        Mathematics
      
    
	
      
        Metadata
      
    
	
      
        Namespaces
      
    
	
      
        Parse trees
      
    
	
      
        Parse trees, functional SQL (WP)
      
    
	
      
        QSQL queries
      
    
	
      
        Regular Expressions
      
    
	
      
        Syntax
      
    
	
      
        Tables
      
    
	
      
        Variadic syntax
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Database
          
        
      
      
        
          
          Database
        
        	
      
        Tables in the filesystem
      
    
	
      
      
      
      
      
      
      
      
        
          Populating tables
          
        
      
      
        
          
          Populating tables
        
        	
      
        Loading from large files
      
    
	
      
        Foreign keys (WP)
      
    
	
      
        Linking columns
      
    
	
      
        Data loaders (WP)
      
    
	
      
        From MDB via ODBC
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Persisting tables
          
        
      
      
        
          
          Persisting tables
        
        	
      
        Serializing an object
      
    
	
      
        Splayed tables
      
    
	
      
        Partitioned tables
      
    
	
      
        Segmented databases
      
    
	
      
        Multiple partitions (WP)
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Maintenance
          
        
      
      
        
          
          Maintenance
        
        	
      
        Data management (WP)
      
    
	
      
        Data-At-Rest Encryption
      
    
	
      
        File compression
      
    
	
      
        Compression (WP)
      
    
	
      
        Permissions (WP)
      
    
	
      
        Query optimization (WP)
      
    
	
      
        Query scaling (WP)
      
    
	
      
        Time-series simplification (WP)
      
    
	
      
        Compacting HDB sym
      
    
	
      
        Working with sym files (WP)
      
    


      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Developing
          
        
      
      
        
          
          Developing
        
        	
      
      
      
      
      
      
      
      
        
          IPC
          
        
      
      
        
          
          IPC
        
        	
      
        Overview
      
    
	
      
        Callbacks
      
    
	
      
        Listening port
      
    
	
      
        Named pipes
      
    
	
      
        Serialization examples
      
    
	
      
        Server calling client
      
    
	
      
        Socket sharding (WP)
      
    
	
      
        SSL/TLS
      
    
	
      
        WebSockets
      
    
	
      
        Interprocess communication (WP)
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Tools
          
        
      
      
        
          
          Tools
        
        	
      
        Code profiler
      
    
	
      
        Debugging
      
    
	
      
        Errors
      
    
	
      
        man.q
      
    
	
      
        System commands
      
    
	
      
        Unit tests
      
    
	
      
        Using .z
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Coding
          
        
      
      
        
          
          Coding
        
        	
      
        Data visualization (WP)
      
    
	
      
        Deferred response
      
    
	
      
        Geospatial indexing
      
    
	
      
        Linear programming
      
    
	
      
        Multithreaded input
      
    
	
      
        Multithreaded primitives
      
    
	
      
        Pivoting tables
      
    
	
      
        Precision
      
    
	
      
        Programming examples
      
    
	
      
        Programming idioms
      
    
	
      
        Temporal data
      
    
	
      
        Timezones
      
    
	
      
        Unicode
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          DevOps
          
        
      
      
        
          
          DevOps
        
        	
      
        Authentication and access
      
    
	
      
        Command-line options
      
    
	
      
        CPU affinity
      
    
	
      
        Custom web server
      
    
	
      
        Daemon
      
    
	
      
        Firewalling
      
    
	
      
        inetd, xinetd
      
    
	
      
        Linux production notes
      
    
	
      
        Logging
      
    
	
      
        Multi-threading (WP)
      
    
	
      
        Multiple versions
      
    
	
      
        Parallel processing
      
    
	
      
        Performance tips
      
    
	
      
        Replay logfile
      
    
	
      
        Shebang script
      
    
	
      
        Surveillance latency (WP)
      
    
	
      
        Windows service
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Release notes
          
        
      
      
        
          
          Release notes
        
        	
      
        History
      
    
	
      
        Changes in 4.1
      
    
	
      
        Changes in 4.0
      
    
	
      
        Changes in 3.6
      
    
	
      
        Changes in 3.5
      
    
	
      
        Changes in 3.4
      
    
	
      
        Changes in 3.3
      
    
	
      
        Changes in 3.2
      
    
	
      
        Changes in 3.1
      
    
	
      
        Changes in 3.0
      
    
	
      
        Changes in 2.8
      
    
	
      
        Changes in 2.7
      
    
	
      
        Changes in 2.6
      
    
	
      
        Changes in 2.5
      
    
	
      
        Changes in 2.4
      
    
	
      
        Withdrawn
      
    


      
    
	
      
        FAQ
      
    


      
    
	
      
      
      
      
      
      
      
      
        
          Architecture
          
        
      
      
        
          
          Architecture
        
        	
      
        About
      
    
	
      
        Examples
      
    
	
      
        Alternative in-memory layouts
      
    
	
      
        Chained tickerplant
      
    
	
      
        Client-server
      
    
	
      
        Corporate actions
      
    
	
      
        Data recovery for kdb+tick (WP)
      
    
	
      
        Disaster recovery (WP)
      
    
	
      
        Gateway design (WP)
      
    
	
      
        Kdb+tick configuration
      
    
	
      
        Kdb+tick profiling (WP)
      
    
	
      
        Kubernetes
      
    
	
      
        Load balancing
      
    
	
      
        Memory backed by files
      
    
	
      
      
      
      
      
      
      
      
        
          Optane Memory
          
        
      
      
        
          
          Optane Memory
        
        	
      
        Optane Memory and kdb+
      
    
	
      
        Performance tests
      
    


      
    
	
      
        Order Book (WP)
      
    
	
      
        Publish and subscribe
      
    
	
      
        Pub/sub with Solace (WP)
      
    
	
      
        Query Routing (WP)
      
    
	
      
        Real-time tick subscribers (WP)
      
    
	
      
        WebSockets (WP)
      
    
	
      
        Write-only RDB
      
    
	
      
      
      
      
      
      
      
      
        
          Advanced
          
        
      
      
        
          
          Advanced
        
        	
      
        Distributed systems (WP)
      
    
	
      
        Intraday writedown (WP)
      
    


      
    


      
    
	
      
        Help
      
    



                  

                

              

            
            
              
              
                
                  
                    

  


  
  
  
    
  
  
    
      
      On this page
    
    	
  
    Corporate actions
  
  
    
      	
  
    Name change
  
  

	
  
    Stock split
  
  

	
  
    Cash dividend
  
  

	
  
    Spin-off
  
  



    
  

	
  
    Temporal data
  
  
    
      	
  
    Non-sorted dictionary
  
  

	
  
    Sorted dictionary
  
  

	
  
    Non-sorted keyed table
  
  

	
  
    Sorted keyed table
  
  



    
  

	
  
    Corporate action name change
  
  
    
      	
  
    Requirements
  
  

	
  
    Reference data
  
  

	
  
    Corporate-action table
  
  

	
  
    Research In Motion
  
  

	
  
    Daily correction table
  
  



    
  

	
  
    The data
  
  
    
      	
  
    Corporate-action adjustment
  
  

	
  
    Get results
  
  



    
  

	
  
    Stock split
  
  

	
  
    Cash dividend
  
  

	
  
    Combining adjustments
  
  

	
  
    Conclusion
  
  

	
  
    Author
  
  



  

                  

                

              

            
          
          
            
              
                
                  


White paper

Temporal data:
A kdb+ framework for corporate actions¶

by Sean Rodgers

Kdb+ is leveraged in many financial institutions across the globe and has built a well-earned reputation as a high-performance database, appropriate for capturing, storing and analyzing enormous amounts of data. It is essential that any large-scale kdb+ system has an efficient design so that time to value is kept to a minimum and the end users are provided with useful functionality.

This white paper examines a framework which can be used to apply corporate-action adjustments on the fly to equity tick data.

Corporate actions are common occurrences that bring about material changes to the underlying securities. We will look into the reasons why a company may choose to apply these actions and what consequences they have on tick data, with a goal to understanding what adjustments are needed and how best to apply them.

It is critical that a kdb+ system can handle these actions in a timely manner and return correct data to the user. Examples of a symbol-name change, stock split and cash dividend will be outlined and for the purposes of this paper we will use Reuters cash-equities market data.

All tests were run using kdb+ version 3.1 (2014.02.08)

Corporate actions¶

When the board of a company agrees to use a corporate action, there is a resulting effect on the underlying securities of that company and its shareholders. Name changes, stock splits, dividends, rights issues and spin-offs are all examples of corporate actions. However, the purpose of each varies and results in a different effect to the nature and quantity of the securities issued by that company.

Name change¶

A company may decide to change its name to reflect a shift in company focus that targets a different core business. Alternatively, it could be to accompany expansion plans in which they require a name that translates across multiple languages. For whatever reason, only in name is the underlying security changed, yet, within a kdb+ system there must be a mapping in place to resolve this action.

Stock split¶

If a stock is trading at a very high price it will deter many potential investors. A stock split will increase the number of outstanding shares whilst decreasing the share price accordingly, attracting investors that previously were priced out of the market. In this case size and price adjustments need to be applied to the data.

Cash dividend¶

Profits made by companies can be distributed in part to their shareholders in the form of a cash dividend. Some companies, for example start-ups, may not do this, to retain any profits as inward investment for growth.

Any investor who purchases a stock before the ex-dividend date (ex-date) is entitled to the dividend. However, beyond this date the dividend belongs to the seller. Therefore, dividends affect the pricing of a stock effective from this date with the number of outstanding shares remaining the same.

Spin-off¶

As part of a business restructuring, spin-offs can be used to break a company up in order to concentrate on separate core competencies. No creation of shares takes place, only the filtering of existing shares into the separate new companies, each having an adjusted price based on the original stock.

	action	price adjustment	size adjustment
	Name change	no change	no change
	Stock split	price%adj	size*adj
	Cash dividend	price*adj	no change
	Spin-off	price*adj	no change


Table 1: Corporate-actions formulas for price and/or size adjustments

The question for a kdb+ developer is how best to apply the adjustments in a consistent and generic manner.

Temporal data¶

One option for dealing with corporate actions would be to capture the daily state of each record. However, this would create an unnecessarily large table over time. We are only interested in when a change occurs, marking them ‘asof’ in a temporal reference table.

In the following sections we look at the behavior of applying the sorted attribute to dictionaries and tables. Its characteristics are important in achieving temporal data to obtain meaningful results when passing any argument within the key range.


Reference: Set Attribute

Adding the sorted attribute s to a dictionary indicates that the data structure is sorted in ascending order. When kdb+ encounters this, a faster binary search can be used instead of the usual linear search. When applied to a dictionary, the attribute creates a step function.

Non-sorted dictionary¶

When querying a non-sorted dictionary, nulls are returned as values for keys that are not present in the dictionary.

q)d:(100*til 5)!`a`b`c`d`e 
q)d
0  |a
100| b
200| c
300| d
400| e
q)d 0 50 150 200 500
`a```c`

Sorted dictionary¶

Taking the same dictionary and applying the sorted attribute, instead of nulls the last known value will be returned.

q)d:`s#d 
q)d 
0  | a 
100| b 
200| c 
300| d 
400| e
q)d 0 50 150 200 75 500
`a`a`b`c`a`e

As a keyed table is a particular case of a dictionary, applying the sorted attribute has similar effect.

Non-sorted keyed table¶

When querying a non-sorted keyed table, nulls  will be returned for values that are not present in the table key.

q)tab:([date:.Q.addmonths[2013.01.01;]3* til 5];
    quarter_name:`Q1_2013`Q2_2013`Q3_2013`Q4_2013`Q1_2014 )
q)tab
date      | quarter_name
----------| ----------
2013.01.01| Q1_2013
2013.04.01| Q2_2013
2013.07.01| Q3_2013
2013.10.01| Q4_2013
2014.01.01| Q1_2014

q)tab([] date:2013.01.01 2013.05.05 2013.06.19 2013.08.25 2013.10.01)
quarter_name
------------
Q1_2013



Q4_2013

Sorted keyed table¶

Running the same query on the sorted version of the table will return more meaningful results.

q)tab:`s#tab

q)tab([] date:2013.01.01 2013.05.05 2013.06.19 2013.08.25 2013.10.01) 
quarter_name
----------
Q1_2013
Q2_2013
Q2_2013
Q3_2013
Q4_2013

Setting the sorted attribute on a vector has no memory cost and kdb+ will verify the data is in ascending order before applying the attribute.

Corporate action name change¶

Requirements¶

When kdb+ is the foundation of a tick trade and quote database, its objective is to obtain a complete picture of a security’s real-time and historical trading activity. Securities from time to time can go through a name change; this is when a company announces that it will be changing its ticker. The following section will present an approach to accessing data for securities that experience this type of corporate action.

Reference data¶

Adequate reference data is paramount to the ability of obtaining consolidated stats. It will play a critical part in forming the correct query to the historical data. Firstly, give each sym a unique identifier (uid) that will be constant for the life of a security. The assumption is made that there is a one-to-one correspondence between sym and a security at any given time. One can obtain this uid per security from an external reference data provider or it can be maintained internally.

Introduced in kdb+ V3.0, GUID is now an option for uid.


Basics: Datatypes

Corporate-action table¶

For ease of understanding, we will be using the sym index to build up this uid and the corresponding corporate-action temporal data reference table cact. In this example, trade and quote data is loaded from a hdb_path directory.

q)\l hdb_path/taq

q)cact:update uid:i, date:first date from ([]sym:sym) 
sym    uid date
---------------------
AAB.TO 0   2010.10.04
AAV.TO 1   2010.10.04
ABX.TO 2   2010.10.04
ABT.TO 3   2010.10.04
ACC.TO 4   2010.10.04
ABC.TO 5   2010.10.04
..
q)//first date is used as it is the earliest point in the hdb 
q)//and therefore any Corporate Actions before this date are not applicable.

q)save `:/ref_path/cact.csv
`:/ref_path/cact.csv

We now have a table in which every distinct sym in the HDB has a uid assigned to it. When a security undergoes a name change, this file must reflect it. A daily correction file should be sourced with matching uid mapping. If a security goes through one or more name changes we need only map to its uid once and use it as a basis to efficiently query a sorted cact table obtaining all previous syms for the interested date range. An example is outlined below.

Research In Motion¶

One high profile name change of recent times was that of Research In Motion (RIM) (NASDAQ: RIMM; TSX: RIM). This change was made in order to have a clear global brand, BlackBerry.

This decision was purely a marketing one and did not affect the underlying stock in any way other than to change its name.

The change to the company’s ticker was effective from the start of trading on Monday 4 Feb 2013 trading as BB on the Toronto Stock Exchange and BBRY on the NASDAQ.

In terms of a Reuters Instrument Code (ric) listed on the Toronto Stock Exchange RIM.TO became BB.TO.

	effective date	type	event
	04-Oct-2010	RIM.TO	first date in HDB
	04-Feb-2013	BB.TO	name change


Table 2: Blackberry name change

Daily correction table¶

A daily correction file will be used to update the cact table as per the example below.


Daily_Cor:([]
  eff_date:(),2013.02.04;
  new_ric:`BB.TO;
  old_ric:`RIM.TO;
  ui d:510 )

q)Daily_Cor
eff_date   new_ric old_ric uid
--------------------------------
2013.02.04 BB.TO  RIM.TO   510

q)cact:`uid`date xkey ("IDS";enlist csv) 0:`:/ref_path/cact.csv

q)`cact upsert `uid`date xkey select uid:uid, date:eff_date, sym:new_ric 
    from Daily_Cor
`cact

q)cact:`uid`date xasc cact
q)select from cact where uid=510
uid date      | sym
--------------| ------
510 2010.10.04| RIM.TO
510 2013.02.04| BB.TO

q)save `:/ref_path/cact.csv
`:/ref_path/cact.csv

Once this is completed all gateways should be notified to pick up the updated cact file and apply the sorted attribute.

q)cact:`uid xasc `uid`date xkey ("IDS";enlist csv) 0:`:/ref_path/cact.csv
q)cact:`s#cact;

The data¶

Within the majority of kdb+ systems, data is obtained through the use of a gateway process.


White paper: Common design principles for kdb+ gateways

The gateway acts as an interface between the end user and the underlying databases. We would like to pass many different parameters into the function getRes that executes the query on the database, and perhaps more than the maximum number allowed in q, which is eight. For this reason we will use a dictionary as the single parameter. A typical parameter dictionary looks like the following:

params:(!) . flip (
  (`symList  ; `BB.TO`RY.TO);    /Requested instruments
  (`startDate; 2013.01.31);      /Only take data from startDate
  (`endDate  ; 2013.02.04);      /Only take data to endDate
  (`startTime; 14:30:00.000);    /Only take data from startTime
  (`endTime  ; 22:00:00.000);    /Only take data to endTime
  (`columns  ; `volume`vwap);    /Requested analytics
  (`applyCact; `NC) )            /To apply name change adjustments

Before this dictionary gets sent to the underlying resources the gateway can enrich the symList with very little expense over the startDate to endDate range to apply any name change corporate actions. This is described in the next section.

Corporate-action adjustment¶

The following cact_adj uses the sorted cact table and reverse lookup to first identify the uid for each sym and determine across all dates between the startDate to endDate range all associated syms.


cact_adj:{[symList;sD;eD] 
  days:1+eD-sD;
  symCount:count symList;
  t where differ t:([]OrigSymList:raze days#/:symList) + 
    cact ([]
        uid:raze days#/:((reverse cact)?/:symList)[`uid];
        date:raze symCount#enlist sD+ til days) }

q)cact_adj . (`BB.TO`RY.TO; 2013.01.31; 2013.02.04) 
OrigSymList sym
------------------
BB.TO       RIM.TO
BB.TO       BB.TO
RY.TO       RY.TO

We can now use this to update the parameters at the gateway level, only executing if the user indicated to apply corporate-action adjustment with applyCact flag set to `NC.


if[params[`applyCact]~`NC;
    params:@[params; `symList`origSymList; :;
      (cact _adj . params`symList`startDate`endDate)`sym`OrigSymList ] 
  ]

q)params
symList    | `RIM.TO`BB.TO`RY.TO
startDate  | 2013.01.31
endDate    | 2013.02.04
startTime  | 14:30:00.000
endTime    | 22:00:00.000
columns    | `volume`vwap
applyCact  | `NC
origSymList| `BB.TO`BB.TO`RY.TO

As you can see the symList has been updated with the pre- and post-corporate action syms. This would not have happened if the sorted attribute had not been applied.

Get results¶

The new enriched params will then be sent to the HDB to obtain the result set by calling the getRes function.


getRes:{[params]:0!select 
  vwap:wavg[size;price],
  volume:sum[size] by sym from trade 
    where date within params`startDate`endDate, sym in params[`symList] }

q)res:getRes[params]
q)res
sym    vwap     volume
------------------------
BB.TO  14.31078 10890299
RIM.TO 12.91377 19889196
RY.TO  62.23244 6057164

Once the query is finished the result set is sent back to the gateway for post processing. First, add the original symList origSymList passed by the user with a left join.

q)res:(flip select sym:symList,origSymList from params) lj `sym xkey res
q)res
sym    origSymList vwap     volume 
------------------------------------
RIM.TO BB.TO       12.91377 19889196
BB.TO  BB.TO       14.31078 10890299
RY.TO  RY.TO       62.23244 6057164

All that is left to do is to aggregate the data by the origSymList. Use of a functional select here has the power to do this.


Basics: Functional qSQL

Q for Mortals §9.12.1 Functional select

q)/aggregate by
q)b:(enlist `sym)!enlist `origSymList

q)/aggregate clauses 
q)a:`volume`vwap!((sum;`volume);(wavg;`volume;`vwap))

q)res: 0!?[res;();b;a] 
q)res
sym   volume   vwap 
----------------------- 
BB.TO 30779495 13.40805 
RY.TO 6057164  62.23244

The final step is to update the consolidated analytics with parameters that the user will find useful.

q)res:![res;();0b;`startDate`endDate`startTime`endTime#params]

The final result that is returned to the user is:

q)res
sym   volume   vwap     startDate  endDate    startTime    endTime
-----------------------------------------------------------------------
BB.TO 30779495 13.40805 2013.01.31 2013.02.04 14:30:00.000 22:00:00.000
RY.TO 6057164  62.23244 2013.01.31 2013.02.04 14:30:00.000 22:00:00.000

Stock split¶

When a company decides to divide their common shares into a larger number of shares this is known as a stock split.

If a company proceeds with a five-for-one split, all number of units held by shareholders would increase by 5 times, however, their equity will remain constant as share price changes accordingly. For example, if a shareholder held 1000 shares before the split, each priced at £10, they would own 5,000 shares after the split at a new price of £2.

This leads to a challenge for a kdb+ developer to return historical stats in terms of today’s stock structure.

	action	priced adjustment	size adjustment
	Stock split	price%adj	size*adj


Table 3: Stock-split formula for price and size adjustments

Imagine a stock XYZ.L that has gone through two stock splits in its lifetime. First a ten-for-one split effective from 1 October 2010. Then again on the 16 February 2012 a further two-for-one split took effect.

	effective date	type	event
	01-Oct-2010	Stock split	10 for 1 (XYZ.L)
	16-Feb-2012	Stock split	2 for 1 (XYZ.L)


Table 4: XYZ.L stock-split history

Typical source data:

q)scrTbl:([]sym:`XYZ.L;date:2010.10.01 2012.02.16;action:`SS;adj:`float$10 2)
q)scrTbl
sym   date       action adj
---------------------------
XYZ.L 2010.10.01 SS     10
XYZ.L 2012.02.16 SS     2

Table 1 showed that there are inconsistencies in how typical source data are applied for different types of actions. For example, price is divided by the adjustment for stock split while for cash dividend it is multiplied. In the following section an adjust-source function adjscr is defined that addresses this and produces a consistent scrTbl table for any corporate action. It provides adjustments for both size (sadj) and price (padj) and also ensures these adjustments always need to be multiplied. This becomes important when adjusting for more than one type of corporate action at a time.


//Adjust scrTbl function, to be consistent for any action
adjscr:{[scrTbl] 
  scrTbl:`sym`date`action`padj xcol update sadj:1%adj from scrTbl 
    where action in `SS; 
  scrTbl:update padj:1%padj from scrTbl where not action in `SS;
  update sadj:1^sadj from scrTbl }

q)scrTbl:adjscr[scrTbl]
q)scrTbl
sym   date       action padj sadj 
--------------------------------- 
XYZ.L 2010.10.01 SS     10   0.1 
XYZ.L 2012.02.16 SS     2    0.5

Again, we are only interested in storing data points of when changes took place. Therefore in a temporal table we need:

	effective date	type	price adjustment	size adjustment
	16-Feb-2012	asof	1	1
	01-Oct-2010	asof	0.5	2
	01-Oct-2010	before	0.05	20


Table 5: XYZ.L temporal table for size adjustments

Transforming the source-data table can be done in the following way.

//calculating adjustment factors
afact:{reverse reciprocal prds 1,reverse x}

ca:{[cact]
  `s#2!ungroup update 
    date:(0Nd,'date),
    padj:afact each padj,
    sadj:afact each sadj from `sym xgroup `sym`date xasc ``action _ 
      select from scrTbl where date<=.z.d, action in cact }

q)adjTbl:ca[`SS]
sym   date      | padj sadj
----------------| ---------
XYZ.L           | 0.05 20
XYZ.L 2010.10.01| 0.5  2
XYZ.L 2012.02.16| 1    1

Raw without stock-split adjustment:

q).Q.view 2010.06.24 2011.07.12 2014.01.10
q)select sum size,avg price by sym,date from trade where sym=`XYZ.L 
sym   date      | size  price
----------------| --------------
XYZ.L 2010.06.24| 1838  293.3333
XYZ.L 2011.07.12| 2911  553.8033
XYZ.L 2014.01.10| 27159 1478.329

Enriched data with stock-split adjustments:


//adjscr allows us to have adjAgg constant for all actions
q)adjAgg:`size`price!((*;`size;`sadj);(*;`price;`padj))
q)adjAgg
size | * `size `sadj
price| * `price `padj

adj:{[cact;res] 
  res:update padj:1^padj,sadj:1^sadj 
    from aj[`sym`date;res;$[not count adjTbl:ca[cact];:res;adjTbl]];
  :`padj`sadj _ 0!![res;();0b;]
    (c where (c:cols res) in key adjAgg)#adjAgg }

q)select sum size,avg price by sym,date 
  from adj[`SS;] select from trade where sym in `XYZ.L
sym   date      | size  price
----------------| --------------
XYZ.L 2010.06.24| 36760 14.66667
XYZ.L 2011.07.12| 5822  276.9017
XYZ.L 2014.01.10| 27159 1478.329

One can see that, for trades occurring after the latest stock split, size remains the same. Trades on 12 July 2011 were before the last stock split but after the first, therefore, trade sizes have increased by a factor of 2, as one share then represents two shares today. Likewise 24 June 2010 was before any splits in the stock and size adjustment is by a factor of 20, as one share then represents twenty shares at present. Price adjustments also appear to ensure trade value remains constant.

Cash dividend¶

Say a stock that has decided to pay a £0.05 dividend per share is trading at £7.00 prior to its ex-dividend date (ex-date).

A shareholder with 10,000 shares has a total value prior to the ex-date of 10,000×£7.00=£70,000. After the ex-date, the price should theoretically drop to £6.95. Yet, the investor's total value is maintained as 10,000×£6.95=£69,500 + £500 cash.

The adjustment factor is determined by:

q)cd_padj:{[P;X] (P-X)%P}
q)cd_padj[7.00;0.05]
0.9928571

q)7.00*0.9928571 // cross check of calculation
6.95

Users may request that historical price values be adjusted. However, size remains the same.

	action	price adjustment	size adjustment
	Cash dividend	price*adj	no change


Table 6: Cash-dividend formula for price and size adjustments

Let’s take a look at a real-world example for BP.L.

	date	type	event
	04-Feb-2014	Results: Q4 2013 results and dividend announcement	Dividend of 5.7065 per share
	11-Feb-2014	Close price	491.75
	12-Feb-2014	Ex-date	Fourth quarter dividend
	12-Feb-2014	Close price	487.05
	28-Mar-2014	Dividend	Fourth quarter payment date


Table 7: BP.L cash-dividend history

Therefore the corresponding price adjustment is as follows:

q)cd_padj[491.75;5.7065]
0.9883955

Similar to the above stock split, typical source data is provided and can be transformed to be a temporal adjTbl with the adjscr, ca and afact functions.

q)scrTbl:([] sym:(),`BP.L;date:2014.02.12;action:`CD;adj:0.9883955) 
q)scrTbl
sym  date       action adj
--------------------------------
BP.L 2014.02.12 CD     0.9883955

q)scrTbl: adjscr[scrTbl]
q)scrTbl
sym  date       action padj     sadj 
------------------------------------ 
BP.L 2014.02.12 CD     1.011741 1

q)adjTbl:ca[`CD]
sym  date      | padj      sadj
---------------| --------------
BP.L           | 0.9883955 1
BP.L 2014.02.12| 1         1

A typical query for last price without adjustment applied

q).Q.view 2014.02.11 2014.02.12

q)0!select last price,last size by sym,date from trade where sym=`BP_.L
sym  date       price  size
-------------------------------
BP.L 2014.02.11 491.75 6432023
BP.L 2014.02.12 487.05 6852708

Same query but now with cash-dividend adjustments:

q).Q.view 2014.02.11 2014.02.12
q)adj[`CD;] select last price,last size by sym,date from trade where sym=`BP.L
sym  date       price    size 
--------------------------------- 
BP.L 2014.02.11 486.0435 6432023 
BP.L 2014.02.12 487.05   6852708

// cross check of calculation
q)491.75*0.9883955
486.0435

The correct price adjustment has been applied for a date prior to the
ex-dividend date.

Combining adjustments¶

The framework outlined in this paper gives the users an option of which corporate-action adjustments, if any, to apply. In the following example a test trade table is created to aid the example.


trade:([]
  date:2013.01.01 2013.04.01 2013.07.01 2014.01.01;
  sym:4#`VOD.L;
  price:4#10;
  size:4#1000 )

q)trade
date       sym   price size
---------------------------
2013.01.01 VOD.L 10    1000
2013.04.01 VOD.L 10    1000
2013.07.01 VOD.L 10    1000
2014.01.01 VOD.L 10    1000

Example source data:


scrTbl:([] 
  sym:`VOD.L;
  date:2012.05.01 2013.02.01 2013.07.01 2013.11.01 2014.06.01;
  action:`SS`CD`CD`SS`CD;
  adj:`float$2 0.95 0.97 10 0.96 )

q)scrTbl
sym   date       action adj
----------------------------
VOD.L 2012.05.01 SS     2
VOD.L 2013.02.01 CD     0.95
VOD.L 2013.07.01 CD     0.97
VOD.L 2013.11.01 SS     10
VOD.L 2014.06.01 CD     0.96

q)scrTbl:adjscr[scrTbl]
sym   date       action padj     sadj 
-------------------------------------
VOD.L 2012.05.01 SS     2        0.5
VOD.L 2013.02.01 CD     1.052632 1
VOD.L 2013.07.01 CD     1.030928 1
VOD.L 2013.11.01 SS     10       0.1
VOD.L 2014.06.01 CD     1.041667 1

No adjustments applied:

q)adj[`;]select from trade
date       sym   price size
---------------------------
2013.01.01 VOD.L 10    1000
2013.04.01 VOD.L 10    1000
2013.07.01 VOD.L 10    1000
2014.01.01 VOD.L 10    1000

Stock splits only:

q)adj[`SS;]select from trade
date       sym   price size
----------------------------
2013.01.01 VOD.L 1     10000
2013.04.01 VOD.L 1     10000
2013.07.01 VOD.L 1     10000
2014.01.01 VOD.L 10    1000

Cash dividend only:

q)adj[`CD;]select from trade
date       sym   price size
---------------------------
2013.01.01 VOD.L 9.215 1000
2013.04.01 VOD.L 9.7   1000
2013.07.01 VOD.L 10    1000
2014.01.01 VOD.L 10    1000

Stock split and cash dividend combined:

q)adj[`SS`CD;]select from trade
date       sym   price  size
-----------------------------
2013.01.01 VOD.L 0.9215 10000
2013.04.01 VOD.L 0.97   10000
2013.07.01 VOD.L 1      10000
2014.01.01 VOD.L 10     1000

From adjusting the standard source data in adjscr function we can see
that adjustment factors for any action are simply multiplied together
to give the combined adjustment factor.

Conclusion¶

This white paper introduced a method for applying corporate-action adjustments to equity tick data on the fly. The basic use of temporal data was outlined, highlighting the power of the sorted attribute. After this, we explained the role of reference data and its importance in a kdb+ system. With this knowledge we laid out an example of a simple gateway request to show how we could aggregate tick data across a date range in which a name change had taken place. Later in the paper, stock splits and cash dividends were also covered.

Overall, this paper provides an insight into the capabilities of kdb+ regarding varies types of corporate actions. It may be used as a framework for firstly dealing with name changes at a gateway level and secondly for handling stock splits and cash dividends at a database level. However it is not limited to these examples, and can also be used for other actions such as stock dividends, rights issues and spin-offs.

All tests were run using kdb+ version 3.1 (2014.02.08)

 PDF

Author¶

Sean Rodgers is a kdb+ consultant based in London. He works for a top-tier investment bank on a global tick-capture and analytic application for a range of different asset classes.






                
              
            

          
          
  

        

        
          
            
            Back to top
          
        
      
      
        
  
  
    
      
  
    
      This work is licensed under a Creative Commons Attribution 4.0 International License.
Kx and kdb+ are registered trademarks of Kx Systems, Inc., a subsidiary of FD Technologies plc.
    

  
  
    Made with
    
      Material for MkDocs
    
  


      
    

  


      
    

    
      

    

    
    
    
    
      
      
        
          
        
      
        
          
        
      
        
          
        
      
        
          
        
      
        
          
        
      
        
          
        
      
    
  